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Abstract. With high mobility and low cost, unmanned aerial vehicles
(UAVs) are widely used in wireless communication systems. Especially in
emergencies, UAVs can be used as aerial base stations (BSs) to provide
wireless communication services for ground users. Aiming to reduce cost,
we prefer to minimizing the number of UAVs needed to serve all users.
Compared with the existing works, we take the constraints of required
quality of service (QoS) and the service ability of each UAV into consid-
eration. To solve the formulated mixed-integer programming problem,
we propose a three-step method. First, to ensure each UAV can serve
more users, the maximum service radius of UAVs is derived according
to users’ QoS requirement. Second, we propose an artificial bee colony
(ABC) algorithm based clustering method to cluster users into differen-
t groups in the horizontal direction. Third, we adjust the positions of
UAVs to obtained a better communication performance of the wireless
communication system. Finally, the simulation results are presented to
demonstrate the superiority of the proposed method.

Keywords: Wireless communication · Unmanned aerial vehicles · Aerial
base stations · Three-dimensional deployment.

1 Introduction

Because of the high mobility, high agility, and high stability of line-of-sight (LoS)
channel [1] of unmanned aerial vehicles (UAVs), wireless communication assist-
ed by UAVs has become more and more popular in recent years [2, 3]. Under
some circumstances, terrestrial infrastructures are unable to maintain a wireless
communication system. For example, earthquakes and floods may destroy those
facilities, while concerts and competitions lead to increased traffic exceeding the
service ability of the system. It is convenient to apply UAVs to resume wireless
communication. A solution to use UAVs in emergencies is to apply UAVs as
aerial base stations (BSs).
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Applying UAVs as aerial-BSs has attracted lots of attention from academia,
including several topics. Among all these topics, the deployment of the UAV is
a basic one. In [4], the authors maximized the coverage region by optimizing the
height of a single UAV. In [5], a three-dimensional (3D) deployment algorithm
was proposed, which can maximize the coverage region of each UAV while sat-
isfying the quality of service (QoS) of different users. In [6], a UAV was used as
an aerial-BS to serve ground users as many as possible while consuming power
as little as possible.

However, as users’ number and demands for communication are increasing
rapidly, using a single UAV to satisfy all users is becoming more and more
difficult. Thus, many studies have discussed the problem of deploying multiple
UAVs. In [7], a spiral deployment algorithm was proposed to deploy UAVs in two-
dimensional (2D). An algorithm was designed to minimize the number of UAVs
needed to serve all the ground users. Similarly, the authors in [8] utilized the
elephant herding optimization algorithm [9] to minimize the number of UAVs.
In [10], the number of UAVs was minimized in the condition of known and
unknown user location. In [11], a low time complexity algorithm was proposed
to minimize the number of UAVs and to optimize the 3D positions of UAVs to
improve resource utilization.

In this paper, we study a downlink UAV network where multiple UAVs are
deployed as BSs to serve the ground users with constraint on service ability.
Different from the existing deployment studies, we are committed to using as
few as possible UAVs to serve all the ground users and optimize the QoS of
users at the same time. As mentioned before, the application of a single UAV is
limited because of its finite service region and service ability. Besides, the air to
ground (A2G) channel model is decided by the positions of UAVs and users, so
the QoS can be improved by adjusting the 3D positions of UAVs.

The rest of this paper is organized as follows. In section 2, the system model
is presented and the multiple UAVs deployment problem is formulated. In sec-
tion 3, the solution to the problem is introduced. In section 4, the simulation
performance compared with existing methods is provided to show the superiority
of our method. Finally, we conclude this paper in section 5.

2 System Model and Problem Formulation

A downlink wireless communication network assisted by multiple UAVs is shown
in Fig.1, where UAVs are used to transmit data to users randomly distributed
in a 2D area D = [0, xmax] × [0, ymax]. Users are denoted by K = {1, 2, · ·
·,K} and the position of each user is presented by wk = [xk, yk]T ∈ R2×1. At
the same time, the deployment area of the UAVs is limited to a 3D area P =
{[xm, ym, hm]|xmin ≤ xm ≤ xmax, ymin ≤ ym ≤ ymax, hm > 0}. M = {1, 2, · ·
·,M} denotes the set of UAVs, and pm = [xm, ym, hm]T ∈ R3×1 represents the
position of each UAV m ∈M.
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Fig. 1. The considered wireless communication system with UAVs

2.1 System Model

Since some obstacles like trees and buildings may block the link between UAVs
and ground users in wireless communication, the channel between UAVs and
users is usually a mixture of line-of-sight (LoS) link and none-line-of-sight (NLoS)
link. Taking UAV m and user k for example, the large-scale channel gain βm,k
between them in LoS environments and NLoS environments can be expressed
as [12]:

βm,k(dm,k) =

{
β0 dm,k

−α LoS environment,

κβ0 dm,k
−α NLoS environment,

(1)

In (1), β0 is the path loss of the reference distance in LoS environments. κ ∈ (0, 1)
is an attenuation coefficient for NLoS environments. dm,k represents the distance
between user k and UAV m, which can be expressed as follow:

dm,k =

√
hm

2 + sm,k2 =
sm,k

cosθm,k
, (2)
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where hm is the height of UAV m, sm,k =
√

(xk − xm)2 + (yk − ym)2 is the 2D
distance between user k and UAV m, and θm,k is the evaluation angle between
user k and UAV m.

Then, the probability of existing an LoS link between user k and UAV m can
be given by [12]:

PLoS(θm,k) =
1

1 + a exp(−b(θm,k − a))
, (3)

where a and b are parameters directly related to the environment. Then, the
probability of NLoS links can be obtained as PNLoS(θm,k) = 1− PLoS(θm,k).

Thus, we can obtain the channel gain between user k and UAV m:

ḡm,k(dm,k, θm,k) , E[|gm,k|2]

= PLoS(θm,k)β0dm,k
−α + PNLoS(θm,k)κβ0dm,k

−α

= P̂LoS(θm,k)β0dm,k
−α,

(4)

where P̂LoS(θm,k) = PLoS(θm,k) + κPNLoS(θm,k).
In this paper, the received power of each user is used as the measurement of

the QoS. The users’ minimum required received signal power is denoted by P0

and the received power of user k from UAV m can be given by:

Pm,k = ḡm,k × Pt, (5)

where Pt is UAVs’ transmitting power. UAV m can successfully transmit data
to user k only when Pm,k is larger than threshold P0. We can get the constraint
about ḡm,k according to (5), which can be given by:

ḡm,k ≥ ḡ0, (6)

where ḡ0 = P0

Pt
represents the minimum channel gain for successful transmission.

Only when the channel gain between UAV m and user k satisfies (6), can UAV
m possibly serve user k.

2.2 Maximum Service Radius

According to the relationship cos θm,k =
sm,k√
s2m,k+h

2
m

, the channel gain ḡm,k can

be rewritten as a function of the 2D distance sm,k and UAV’s height hm. The
relation is shown in Fig.2.

Fig.2 shows a typical plot of ḡm,k versus hm for different sm,k values. It can
be seen that when hm is fixed, ḡ decreases with increasing sm,k and finally fails to
meet the requirement (6) if sm,k > rmax, where rmax represents the largest ser-
vice radius of UAV. When sm,k is fixed, ḡ increases to the highest point because
of the increasing the probability of existing LoS link, and then decreases because
of the attenuation of long distance. Therefore, given the minimum channel gain
requirement ḡ0, the optimal height can be calculated by [4]:
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Fig. 2. Curve of channel gain ḡ0 as a function of hm when sm,k is fixed.

∂sm,k
∂hm

= 0 (7)

After deriving the optimal height hm, the largest service radius rmax is ob-
tained by solving the following equation [4]:

ḡ(rmax, hm) = ḡ0 (8)

That is to say, when the 2D distance between UAV m and user k satisfies
sm,k ≤ rmax, users k can be served by UAV m. However, if the distance between
UAV m′ and user k also satisfies the relation above, whether UAV m should serve
user k becomes unclear. In order to solve this problem, we define an indicator
function to ensure each user is served by only one UAV:

γm,k =

{
1, User k is served by UAV m,

0, Otherwise,
(9)

where user k is served by UAV m for γ = 1, and γm,k = 0 otherwise.

2.3 Problem Formulation

The number of ground users served by each UAV is limited because of UAVs’
limited service ability. Nmax is used to represent the maximum number of ground
users each UAV can serve. By jointly optimizing the connection between UAVs
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and ground users and the positions of UAVs, the problem for minimization of
the number of UAVs is formulated as follows:

min
{pm},{γm

k }
|M| (10)

s.t. ḡm,k ≥ ḡ0γmk ∀k ∈ K,∀m ∈M. (10a)

pm ∈ P ∀m ∈M (10b)∑
k∈K

γm,k ≤ Nmax ∀m ∈M (10c)∑
m∈M

γm,k = 1 ∀k ∈ K (10d)

Constraint (10a) indicates that (6) must be satisfied when user k is served
by UAV m. The constraints on the deployment area and service ability of each
UAV are shown in (10b) and (10c). Constraint (10d) means that each user can
only be served by one UAV.

There are integer and continuous variables in (10), meaning that it is a mixed-
integer programming problem, which is difficult to solve [13]. In the next section,
a suboptimal solution of (10) will be developed.

3 UAV Deployment Method

In this section, we first design an algorithm that combines the heuristic algorithm
in [7] and the artificial bee colony (ABC) algorithm to cluster users into groups.
This algorithm can minimize the number of UAVs required to serve all users.
Then, we optimize the 3D position of each UAV to improve QoS.

3.1 User Clustering

We reformulate the problem of user clustering as follow:

min
{γm,k}

|M| (11)

s.t. γm,krm,k ≤ rmax ∀k ∈ K,∀m ∈M (11a)

.
∑
k∈K

γm,k ≤ Nmax ∀m ∈M (11b)∑
m∈M

γm,k = 1 ∀k ∈ K (11c)

We aim at adjusting the serve indicator variable γm,k to minimize the num-
ber of groups, which is also the number of UAVs. To solve (11), an Ordered
ABC-based Placement (OAP) algorithm is designed, which combines ABC algo-
rithm and heuristic algorithm. ABC algorithm can effectively find the optimal
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or suboptimal solution for difficult problem and heuristic algorithm is used to
reduce the solution space of ABC algorithm to find the solution more quickly.

The main idea of the iterative algorithm OAP algorithm is to give priority
to users located at the outmost periphery of all users. A circle with radius rmax
is used to cover users, and users covered in each iteration will be clustered into
the same group.

In each iteration, we first find users located at the outmost edge of the un-
covered users, called boundary users KU,bo, while the other users are called inner
users KU,in. In order to ensure that the clustering is performed in an order from
outside to inside, a boundary user needs to be selected as the feature user k0 of
each group, so that each clustering work is carried out near the boundary of the
uncovered user area. In the first iteration, a boundary user is randomly selected
as k0 from KU,bo, and in each subsequent iteration, the user on the boundary of
updated uncovered users that is closest to k0 in the last iteration will be selected
as the new k0.

After k0 is selected, calculate the distances between all users and k0. Bound-
ary users and inner users with a distance of not greater than 2rmax from k0 are
grouped into the sets Klocal,bo and Klocal,in. Only users in Klocal,bo and Klocal,in
need to be considered when clustering users because users with distances greater
than 2rmax are impossible to be clustered into the same groups. The process
above is effective in reducing the solution space of ABC algorithm.

Then, ABC algorithm is applied to determine the cluster’s center, trying to
cluster as more users as possible into this group. The above iteration continues
until all users are grouped. Finally, we derive the center position of each cluster
and divide users into different groups. The set of groups is presented as L =
{L1, · · ·,L|M|}. Every user k is guaranteed to belong to one subset of L.

The process of clustering users into different groups is described in Algorithm
1. Step 6 depicts the process of applying ABC algorithm to decide the center of
cluster, which is detailed in Algorithm 2.

ABC algorithm was designed to solve multivariable function optimization
problems in 2005 [14]. The algorithm imitates the behavior of employed bees,
onlooker bees and scout bees when they are searching for food to find the solution
to the problem. The algorithm is presented as follows.

1. Initialization: Firstly, the initial solution set is randomly generated as F (0) =

{F (0)
1 , · · ·, F (0)

Np
}, where Np stands for the total amount of solutions. Every

initial solution F
(0)
i = (x

(0)
i , y

(0)
i ) ∈ F (0) is a possible location for the center

of cluster m.

Then we define a function s(F
(0)
i , k0) =

√
(x

(0)
i − xk0)2 + (y

(0)
i − yk0)2 to

represent the 2D distance s(F
(0)
i , k0) between each F

(0)
i and k0. If s(F

(0)
i , k0) >

rmax, which means the cluster cannot cover k0, the distance s(F
(0)
i , k0)

should be normalized to rmax. The new position F
′(0)
i after normalization is

determined as follow:
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Algorithm 1: Ordered ABC-based User Clustering Algorithm

Input:
User set K, user locations {wk}

Output:
The number of groups |M| and set L

1: Initialize m = 1, L = ∅, KU = K
2: while KU 6= ∅ do
3: Find boundary user set KU,bo ⊆ KU and update inner user set

KU,in ← KU\KU,bo.
4: Choose the feature user k0
5: For every kU,bo ∈ KU,bo, calculate the distance between kU,bo and k0. If the

distance is not greater than 2rmax, add kU,bo to Klocal,bo.
For every kU,in ∈ KU,in, calculate the distance between kU,in and k0. If the
distance is not greater than 2rmax, add kU,in to Klocal,in.

6: Use Algorithm 2 to obtain Lm.
7: Set KU ← KU\Lm.
8: Update m = m+ 1.
9: Add Lm to L.

10: end while
11: |M| = m return L.

x
′(0)
i = rmax

s(F
(0)
i ,k0)

(x
(0)
i − xk0) + xk0 ,

y
′(0)
i = rmax

s(F
(0)
i ,k0)

(y
(0)
i − yk0) + yk0 .

(12)

After that, we calculate the fitness value of every solution to find the best
position to be the cluster’s center. The fitness value is defined as follow:

f0i(x0, y0) =

{
α1Nbo + α2Nin, Nbo +Nin ≤ Nmax,

0.01, Nbo +Nin > Nmax,
(13)

where Nbo represents the number of boundary users in Klocal,bo which are

covered by the circle with F
(0)
i or F

′(0)
i as the center and rmax as the radius,

Nin represents the number of inner users Klocal,in covered by that circle. α1

and α2 are weights of Nbo and Nin respectively and satisfy α1 > α2. (13)
means that if the number of users covered by the circle is no more than
Nmax, the number of covered users increases may lead to the increasing of

fitness value and the bigger the fitness value is, the higher probability of F
(0)
i

to be the optimal solution. However, if the number of users covered by the
circle is greater than Nmax, we have f0i(x0, y0) = 0.01, which means that

F
(0)
i ’s fitness value is too small to be the optimal solution. By calculating

the fitness value of each solution, the initial optimal solution Fmc with the
largest value of fitness function f cm can be obtained.

2. Employed Bees Phase: The role of Employed bees is to find other possible
positions as group centers near the current locations. For every possible po-
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Algorithm 2: ABC Procedure

Input: {wk}k∈K ∈ R2×1, Klocal,bo, Klocal,in, k0, Nmax, rmax, Np, T , Ts

Output: Lm

1: Randomly initialize the set of possible positions for cluster’s center F (0).
For F0i ∈ F (0), calculate its distance with feature user k0. If the distance is
greater than rmax then normalize it.
Calculate the fitness value of every position, and find the position Fm

c with the
greatest fitness valuefm

c

t = 0.
2: while t 6= T do
3: Employed bees search for a better solution in the neighbourhood of current

solution.
Update the solution set F (t).

4: Onlooker bees search for a better solution according to the probability.
Update the solution set F (t).

5: Scout bees generate a new solution if the current remains unmodified during Ts

iterations.
6: Calculate fitness value of every solution in F (t).

Find the greatest fitness value of solutions in F (t) and compare it with fm
c .

Choose the one with greater fitness value as Fm
c .

7: Update t = t+ 1.
8: end while
9: Calculate the distance ski,Fm

c
between Fm

c and every user ki. If ski,Fm
c
< rmax,

add ki to Lm.
return Lm.

sition F
(t−1)
i , an employed bee searches for a new position F

(t)
i = (x

(t)
i , y

(t)
i )

as follow:
F

(t)
i (k) = F

(t−1)
i (k) + φ(F

(t−1)
i (k)− F (t−1)

j (k)), (14)

where k = 1, 2 represents the x or y coordinate of the position, F
(t−1)
j (k)

represents another position in F (t−1) differing from F
(t−1)
i (k), φ ∈ [−1, 1]

is a random number. After examining and adjusting the position F
(t)
i , we

can compare its fitness value with F
(t−1)
i . If F

(t)
i has a greater fitness value,

F
(t−1)
i (k) will be replaced by F

(t)
i (k). Finally a new solution set F (t) will be

obtained.
3. Onlooker Bees Phase: Every onlooker bee selects a position in F (t) according

to the probability of every solution and starts searching for a better solution

in its neighborhood. For every position F
(t)
i , the probability of being chosen

by the onlooker bee is calculated as:

Pi =
0.9 ∗ f (t)i
max(f

(t)
i )

+ 0.1, (15)

where max(f
(t)
i ) represents the largest fitness value of positions in F (t).

Every onlooker bee generates a random number rand ∈ (0, 1). If rand < Pi,
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then the onlooker bee chooses F
(t)
i , and searches for a new position like

(14). Then we can adjust its position and calculate its fitness value. If it
has a greater fitness value, the current position will be replaced by the new
one. Finally, we will get a new set F (t). The largest fitness value in F (t)

is compared with fmc . If it is greater than fmc , then fmc and Fmc should be
updated.

4. Scout Bees Phase: If there is no position better than the current one in its
neighborhood after Ts iteration, where Ts represents the largest searching
time, the old position will be given up while the scout bee will randomly
generate a new position and start its searching. It is an effective process to
remove local optimums.

The iteration will be repeated until the iteration time is up to the maximum
value T . The position Fmc with the maximum fitness value is decided as the
optimal position for the cluster’s center. Users covered by the circle with center
Fmc and radius rmax are stored in the set Lm. The algorithm is presented in
Algorithm 2.

When operating the proposed user clustering algorithm, Algorithm 2 is called
to decide which users should be clustered into a group. In Algorithm 2, the
complexity of initialization is O(Np |Klocal|). The complexity of each iteration
is O(2Np |Klocal|). Thus, the complexity of Algorithm 2 is O(TNp |Klocal|). In
Algorithm 1, the complexity of line 3-5 is O(N0) as a whole. Consequently, the
total computational complexity of the algorithm isO(TNp |M| |Klocal|+|M|N0).

3.2 3D Deployment

In the previous subsection, we have divided users into different groups and en-
sured the number of groups to be as little as possible, which is also the number
of UAVs. In this subsection, the 3D position of each UAV will be optimized
to improve the QoS of served users and to reduce the total interference of the
system. Taking the UAV m and the group Lm served by UAV m for example,
a minimum service region will be derived first to exclude users not belonging
to Lm and normal transmission from UAV m to users belonging to Lm will be
guaranteed at the same time.

To minimize the service region of UAV m, we need a minimum circle to cover
all users belonging to Lm. The problem can be formulated as followed:

min
xm,ym

max
l∈Lm

sm,l (16)

where sm,l denotes the distance between UAV m and user l in Lm. It has been
demonstrated that (16) is a convex optimization problem and can be solved
by CVX [5]. The coordinates (xm, ym) , which are the center of the obtained
minimum circle, are also the 2D position of UAV m. The result of (16) rm is the
service radius of UAV m, which is no larger than the maximum service according
to the definition, i.e., rm < rmax. Thus, we need to adjust the flight height of
each UAV next.



A Deployment Method Based on Artificial Bee Colony Algorithm 11

According to Fig.2, when the service radius of UAV m is fixed, there is always
an optimal height that can maximize the channel gain of UAV m. That is to
say, users belonging to Lm can get better QoS if UAV is deployed at the optimal
height. The optimal height hm for UAV m to maximize the channel gain can be
obtained by solving the following equation:

∂ḡ(rm, hm)

∂hm
= 0, (17)

where rm is the real service radius for UAV m.

4 Simulation Results

The simulation results are represented and analyzed in this section. In our simu-
lations, users distribute randomly in a square area and the results in a sophisti-
cated urban environment are considered. The parameters in our simulation are
shown in Table 1.

Table 1. Simulation Parameters

Parameter Value

a 11.95

b 0.14

β0 5× 10−5

κ 0.01

Tpso, Tabc 1000

Pnum, Bnum 200

Nmax 5

According these parameters, we can calculate that rmax = 578m. We choose
three other algorithms to compare with the OAP algorithm proposed in this
paper, which are Unordered ABC-based placement (UAP) algorithm, Ordered
PSO-based Placement (OPP) algorithm and Edge-Prior placement (EPP) algo-
rithm [11]. UAP algorithm picks k0 randomly from uncovered users, which is
different from OAP algorithm. Besides, Tabc, Tpso, Pnum and Bnum denote the
maximum iteration times of ABC algorithm and PSO algorithm, the population
of ABC algorithm and PSO algorithm, respectively.

Fig.3 demonstrates the priority of minimizing the number of UAVs of our
algorithm in a general way. Each point is averaged over 100 independent user
distributions. In Fig.3(a), the comparison of the number of UAVs with users
distributing in different areas is presented. It can be seen that no matter in which
condition, OAP algorithm performs the best. Meanwhile, as the distribution area
becomes larger, the density of users becomes smaller, so more UAVs are needed
to serve all the ground users. In Fig.3(b), the comparison of the number of UAVs
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with different numbers of users is presented. OAP algorithm still performs the
best and more UAVs are needed for serving more numbers of users.

Fig.4 shows the effect of our 3D deployment method on improving QoS in
a general way. We take the received power and the interference power into con-
sideration with transmitting power Pt = 30 dBW . Fig.4(a) shows the change
in received power and interference power before and after position optimization
with different users distribution area. It can be seen that the received power
always increases and the interference power always decreases obviously after po-
sition optimization. With the distribution area enlarging, the received power
increases and the interference power decreases. Fig.4(b) shows the change in the
received power and the interference power before and after position optimiza-
tion with different number of users. It is also obvious that the received power
increases and the interference decreases after position optimization.

In summary, the simulation results show that compared with other methods,
our 3D deployment method performs better on reducing the number of UAVs.
After optimizing the 3D position of each UAV, the QoS of wireless communica-
tion can be improved obviously.

5 Conclusion

A UAV-mounted wireless communication system was investigated and a 3D de-
ployment method based on ABC algorithm was proposed in this paper. The
algorithm could minimize the number of UAVs required to serve all ground
users while ensure the QoS requirement of users. We first derived the maximum
service radius of UAVs according to the QoS requirement. Then we proposed
the OAP algorithm to deploy multiple UAVs, where the number of UAVs was
minimized first and then the 3D positions of UAVs were optimized to improve
the QoS of the system. Simulation results showed that our method has the su-
periority of minimizing the number of UAVs and improving the QoS compared
with other algorithms.
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