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Abstract
Synthetic aperture radar (SAR) automatic target recognition (ATR) technology is one of the research hotspots in the field of image
cognitive learning. Inspired by the human cognitive process, experts have designed convolutional neural network (CNN)-based
SAR ATR methods. However, the performance of CNN significantly deteriorates when the labeled samples are insufficient. To
effectively utilize the unlabeled samples, we present a novel semi-supervised CNNmethod. In the training process of our method,
the information contained in the unlabeled samples is integrated into the loss function of CNN. Specifically, we first utilize CNN
to obtain the class probabilities of the unlabeled samples. Thresholding processing is performed to optimize the class probabilities
so that the reliability of the unlabeled samples is improved. Afterward, the optimized class probabilities are used to calculate the
scatter matrices of the linear discriminant analysis (LDA) method. Finally, the loss function of CNN is modified by the scatter
matrices. We choose ten types of targets from the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset.
The experimental results show that the recognition accuracy of our method is significantly higher than other semi-supervised
methods. It has been proved that our method can effectively improve the SAR ATR accuracy when labeled samples are
insufficient.

Keywords Synthetic aperture radar . Image recognition . Convolutional neural network . Semi-supervised learning . Linear
discriminant analysis

Introduction

Synthetic aperture radar (SAR) has beenwidely used due to its
high resolution and penetrating ability [1–3]. SAR automatic
target recognition (ATR) technology aims to automatically
recognize the targets from SAR images. With an increasing
amount of data acquired by SAR imaging systems, SAR ATR
has become one of the research hotspots [4, 5]. Based on the
cognitive system, humans are able to recognize targets quickly
and accurately. Inspired by this, various methods that imitate

the human cognitive system have been proposed to improve
the SAR ATR accuracy.

During the human cognitive process, image signals ac-
quired by the retina first go through the primary visual cortex
for extracting edge and orientation features, followed by the
generation of shape and contour features [6]. In this way, image
signals pass through the higher-level visual cortex and we can
obtain the more abstract features. Hence, human image cogni-
tion is a process of obtaining abstract features through layer-
by-layer visual cortex [7, 8]. Inspired by this process, people
have established various neural network models. By simulat-
ing the whole process of the human visual system from the
retina to the visual cortex, an effective SAR image feature
extraction method was proposed in [9]. Using the hierarchical
perceptual inference process embedded in the cortex, Spratling
et al. proposed a hierarchical neural network for visual object
recognition [10]. Ren et al. proposed a multiple convolutional
neural network (CNN) based on the human visual system [11].

CNN simulates the visual cortex using convolution layers
and each convolution layer contains several convolution ker-
nels for extracting abstract features. Compared with the other

* Fei Gao
feigao2000@163.com

1 School of Electronic Information Engineering, Beihang University,
Beijing 100191, China

2 Strathclyde Space Institute, Department of Design, Manufacture and
Engineering Management, University of Strathclyde, Glasgow G1
1XJ, UK

3 Department of Informatics, University of Leicester, Leicester LE1
7RH, UK

Cognitive Computation
https://doi.org/10.1007/s12559-019-09639-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-019-09639-x&domain=pdf
mailto:feigao2000@163.com


neural network models, CNN has been successfully applied to
SAR ATR due to its powerful feature extraction capability
[12–14]. Chen et al. proposed a CNN model to transform
SAR images into a set of feature maps [15]. Gao et al. pro-
posed a new SAR ATR method by combining CNN and sup-
port vector machine (SVM) [16]. It has been proved that the
CNN model can effectively improve the SAR ATR accuracy.
However, the CNN model needs a large number of labeled
samples in the training process. When the labeled samples are
insufficient, the recognition accuracy of the CNN decreases
significantly [17]. Because of the imaging nature, speckle
noise and clutters exist in SAR images, which increase
the difficulty of the sample annotation. As a result, the
number of the labeled samples is insufficient, which
restricts the application of CNN in SAR ATR. In recent
years, researchers are focusing on improving the SAR
ATR accuracy with a small labeled dataset [18].
However, compared with labeled samples, unlabeled
samples are easier to acquire. Besides, unlabeled sam-
ples also contain a wealth of information which helps to
improve the SAR ATR accuracy.

The human cognition does not need a large number of
labeled samples [19, 20]. Based on the labeled samples, we
are able to utilize the unlabeled samples and revise the object
recognition criteria that we learned previously, which is
known as the semi-supervised mechanism [21]. Inspired
by this mechanism, semi-supervised learning methods
have been designed to improve the SAR ATR accuracy
when the labeled samples are insufficient [22, 23]. The
common semi-supervised learning methods include self-
training, co-training, graph-based methods, and semi-
supervised SVM [24–26]. Lv et al. presented a semi-
supervised predictive sparse decomposition method for
feature learning [27]. To solve the online semi-
supervised learning problems, Ding et al. proposed a
novel manifold regularized model in a reproducing ker-
nel Hilbert space [28].

Recently, researchers are devoted to combining semi-
supervised learning methods with neural network models.
To effectively utilize the unlabeled samples, a semi-super-
vised deep learning model based on ladder networks
was proposed in [29]. Samuli and Timo presented two
simple and efficient semi-supervised CNN models, i.e.,
the Pi model and the temporal ensembling model [30].
The two models are based on the self-ensembling meth-
od where the Bpseudo labels^ of the unlabeled samples
are generated by the outputs of CNN. Although the
above semi-supervised methods are proved to be effec-
tive, it has been found that semi-supervised methods
cannot always improve the image recognition accuracy
[31, 32]. For example, the Pi model and the temporal
ensembling model use CNN to generate the pseudo la-
bels of unlabeled samples. However, the reliability of

the unlabeled samples will be significantly reduced if
the pseudo labels are incorrect. As a result, the perfor-
mance of CNN will be worse. The reliability of the
unlabeled samples has a decisive influence on semi-
supervised methods.

In this paper, a novel semi-supervised CNN method is pro-
posed to improve the SAR ATR accuracy. The innovations of
our method are as follows.

CNN is utilized to obtain the class probabilities of the un-
labeled samples. To improve the reliability of the unlabeled
samples, we perform thresholding processing on the class
probabilities.2. Based on the optimized class probabilities,
we design a new linear discriminant analysis (LDA) method
to utilize the information contained in the unlabeled samples.
Then the loss function of CNN is modified by the scatter
matrices of the new LDA method.

The rest of this paper is arranged as follows. In the
BPreliminary^ section, CNN and the LDAmethods are briefly
introduced. BThe Proposed Method^ section describes the
principle of our method in detail. The experiments are per-
formed in the BExperiments^ section. We summarize our con-
tribution in the BConclusion^ section.

Preliminary

Convolutional Neural Network

CNN is mainly composed of convolution, pooling, and fully
connected layers. The convolution layers are used to extract
image features. The pooling layers decrease the risk of
overfitting by reducing the dimensions of features. The fully
connected layers are used to integrate the image features. The
training process of CNN consists of forward and backward
propagation [33, 34].

In the forward propagation process, the current layer of
CNN receives the output of the previous layer, which is
expressed as follows:

zl ¼ wlal−1 þ bl

al ¼ σ zl
� � o

ð1Þ

where l denotes the lth layer. zl, wl, and bl represent the weight-
ed input of the lth layer, the weight matrix, and the bias matrix,
respectively. σ denotes the nonlinear activation function and al

represents the actual output of the lth layer. If l = 1, a0 repre-
sents the pixel value of the input image.

In the backward propagation process, the parameterswl and
bl of CNN are updated using the back propagation (BP) algo-
rithm. In detail, the BP algorithm first constructs a loss func-
tion based on the actual and the expected outputs of CNN.
Afterward, the gradient descent method is utilized to update
the parameters wl and bl along the gradient decent direction of

Cogn Comput



the loss function. Suppose that E0 is the loss function
and L denotes the number of the layers of CNN. Then
the error vector of the output layer is expressed as fol-
lows:

δL ¼ ∂E0

∂zL
ð2Þ

The error vector of the (l − 1)th layer can be calculated by
the error vector of the lth layer. Therefore, the error vector δl of
each layer can be calculated by the Chain Rule:

δl ¼ wlþ1δlþ1∘σ
0
zl
� � ð3Þ

where the symbolic ∘ represents the element-wise product of
the two vectors. The partial derivative of E0 tow

l and bl can be
calculated by Eq. (4):

∂E0

∂wl ¼
∂E0

∂zl
∘
∂zl

∂wl ¼ δl∘al−1

∂E0

∂bl
¼ ∂E0

∂zl
∘
∂zl

∂bl
¼ δl

o
ð4Þ

Then the changes of wl and bl are calculated:

Δwl ¼ −η
∂E0

∂wl

Δbl ¼ −η
∂E0

∂bl

o
ð5Þ

where η denotes the learning rate.

Linear Discriminant Analysis

LDA is used to search a subspace where the samples of dif-
ferent classes are distant from each other while the samples of
the same class are close to each other [35, 36]. In the case of
binary classification, given the training dataset
D ¼ xi; yið Þf gmi¼1, where xi denotes the training samples and
yi ∈ {0, 1} denotes their labels,m represents the number of the
samples in the training dataset. Suppose that μi and Ci

represent the mean vector and covariance matrices of
the ith class, respectively, and w denotes the projection
vector. In order to make the samples of the same class as
close as possible in the subspace, wTC0w +wTC1w should be

small. While wTμ0−wTμ1k k22 should be large to make the
samples of different classes as distant as possible. Taking these
into consideration, we get the optimization objective function
as follows:

J ¼ wTμ0−wTμ1k k22
wTC0wþ wTC1w

¼ wT μ0−μ1ð Þ μ0−μ1ð ÞTw
wT C0 þ C1ð Þw ð6Þ

We define the within-class scatter matrix Sw =C0 +C1 and
the between-class scatter matrix Sb = (μ0 − μ1)(μ0 − μ1)

T.
Then the objective function Eq. (6) can be rewritten as Eq.

(7), which is called the Bgeneralized Rayleigh quotient^ of Sw
and Sb.

J ¼ wTSbw
wTSww

ð7Þ

Next, the LDA algorithm is extended to the field of multi-
classification. Suppose that there areN classes and the number
of the samples of the ith class is mi, then the total-class scatter
matrix is defined as follows:

St ¼ Sb þ Sw ¼ ∑
m

i¼1
xi−μð Þ xi−μð ÞT ð8Þ

where m denotes the total number of the samples and μ repre-
sents the mean vector of all the samples. The within-class scatter
matrix is defined as the sum of the covariance matrices for each
class:

Sw ¼ ∑
N

i¼1
Ci ð9Þ

According to Eqs. (8) and (9), the between-class scatter
matrix is obtained:

Sb ¼ St−Sw ¼ ∑
N

i¼1
mi μi−μð Þ μi−μð ÞT ð10Þ

There are various ways to construct the optimization objec-
tive function of LDA for multi-classification, and one of the
common ways is expressed in Eq. (7).

The Proposed Method

We first define the system parameters. The training dataset X
consists of two parts:X = [L,U] ∈ Rd ×N, where L = [x1, x2,⋯,
xl] ∈ Rd × l represents the labeled dataset and U = [xl + 1, xl + 2,
⋯, xl + u] ∈ Rd × u represents the unlabeled dataset. d denotes
the dimension of the samples.N, l, and u represent the number
of the samples in X, L, and U, respectively.

As shown in Fig. 1, the training process of our method is
composed of three parts: feature extraction, supervised learning,
and semi-supervised learning. In the feature extraction, we use
CNN to extract the features of the samples. L′ and U′ represent
the feature vector of the labeled and unlabeled datasets, respec-
tively. In the process of supervised learning, the labeled samples
are utilized to obtain the supervised component of the loss func-
tion for CNN. The semi-supervised learning process which con-
sists of two steps is the core of our method. We first utilize CNN
to obtain the class probabilities of the unlabeled samples. To
improve the reliability of the unlabeled samples, thresholding
processing is performed to optimize the class probabilities.
Afterward, we utilize the optimized class probabilities to calcu-
late the scatter matrices of the new LDA method. Then the un-
supervised component of the loss function is constructed using

Cogn Comput



the scatter matrices. Next, the two steps of the semi-supervised
learning process are described in detail.

Class Probabilities of Unlabeled Samples

To effectively utilize the unlabeled samples, we adopt CNN to
obtain their class probabilities. Compared with optical images,
the signal-to-noise ratio (SNR) and resolutions of SAR images
are relatively low. Therefore, CNN models such as AlexNet
and VGGNet for optical images are not suitable for SAR
images. The network structure of our CNN model is shown
in Fig. 2. The size of the input images is 64 × 64. Conv1,
Conv2, and Conv3 represent the convolution layers, which
contain 20, 40, and 80 kernels with sizes 3 × 3, 4 × 4, and
3 × 3, respectively. We adopt the Relu activation function in
the convolution layers. Maxpool denotes the maximum
pooling operation, and the pool size is 2 × 2. The Flatten layer
stretches the output of Conv3 to create a 2880 dimensional
column vector. Linear1, Linear2, and Linear3 represent the
fully connected layers whose output dimensions are 2880,
2880, and 10, respectively. The Relu activation function is
also adopted in the fully connected layers.

Suppose that the number of the neurons in the output layer
is K, that is, the CNN eventually divides the input images into
K classes. As expressed in Eq. (11), we utilize the softmax
function to normalize the output of CNN, and the class prob-
abilities of the unlabeled samples are obtained.

pk ¼
eak

∑
K

j¼1
ea j

ð11Þ

where [a1, a2,⋯, aK] is the output of CNN. Hence, the class
probabilities of a sample can be represented as [p1, p2,⋯, pK],
where pk denotes the probability of the sample belonging to
the kth class. The larger the value of pk is, the greater the

probability is. ∑
K

k¼1
pk ¼ 1, and if one item increases, the sum

of the others will be decreased.
The reliability of a sample is related to its real label and

class probabilities. We define the reliability factor (RF) to
measure the reliability of samples. As expressed in Eq. (12),
preal denotes the probability of a sample belonging to the class
that corresponds to its real label. The larger the value of RF is,

Input image 64*64

Conv1(20*3*3 /Relu /Maxpool 2*2)

Conv2(40*4*4 /Relu /Maxpool 2*2)

Conv3(80*3*3 /Relu /Maxpool 2*2)

Flatten(2880)

Linear1(2880 /Relu)

Linear2(2880 /Relu)

Linear3(10 /Relu)

Fig. 2 The network structure of our CNN model

Softmax function

L’

U’

CNN

Feature extraction

Semi-supervised Learning

Cross-entropy 
loss function

Supervised Learning

L : labelled 
samples 

U : unlabelled 
samples 

Label

Thresholding processing

The new LDA method 

class probabilities

sum

loss

output

Fig. 1 The flowchart of the
training process
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the more reliable of the sample. In general, a sample with the
RF value greater than 0.9 can be regarded as a reliable sample.

RF ¼ preal

∑
K

k¼1
pk

ð12Þ

Suppose that pi ∈ R1 ×N denotes the class probabilities of
the unlabeled samples belonging to the ith class. To improve
the reliability of the unlabeled samples, we apply thresholding
processing to pi:

pij ¼
0; pij < t
pij; others

; i∈ 1; 2;⋯;K½ �; j∈ 1; 2;⋯; u½ �
(

ð13Þ

where pij represents the j
th element of pi and t is the threshold.

The greater the value of t is, the stricter the reliability requirement
is. If the maximum class probability of a sample is less than t, all
the class probabilities of the sample will be set to 0. The unla-
beled samples are utilized based on the class probabilities and the
new LDA method. Thus, the unlabeled samples whose class
probabilities are all set to 0 will not be utilized in the training
process.

The New LDA Method

After obtaining the class probabilities, how to utilize the unla-
beled samples is the key to improving the recognition accuracy
of the CNN model. Most of the semi-supervised CNN methods
extend the labeled dataset by using the CNN to label the unla-
beled samples. Then the CNN is retrained with the extended
labeled dataset. However, when the labeled samples are insuffi-
cient, the generalization ability of the CNN model is weak. As a
result, the pseudo labels for the unlabeled samples are not cred-
ible, which will lead to accuracy reduction. The LDA method
constructs an optimization function based on thewithin-class and
between-class distance of the samples. Using the projection vec-
tor, the samples of different classes are distant from each other
while the samples of the same class are close to each other. We
design a new LDAmethod to exploit the unlabeled samples. The
scatter matrices of our new LDAmethod are calculated based on
the class probabilities of the unlabeled samples. Then the loss
function of CNN is modified by the scatter matrices.

In the new LDAmethod, we redefine the within-class mean
vector ui and the total mean vector u:

ui ¼
∑
N

j¼1
pijx j

∑
N

j¼1
pij

¼ X pij= ∑
N

j¼1
pij

 !
¼ X epi

u ¼
∑
K

i¼1
∑
N

j¼1
pijx j

∑
K

i¼1
∑
N

j¼1
pij

¼ X ∑
K

i¼1
pi= ∑

K

i¼1
∑
N

j¼1
pij

 !
¼ X~p

o
ð14Þ

Compared with the standard LDAmethod, we use the class
probabilities to calculate the mean vectors. The larger
the probability is, the greater the impact on the mean
vectors is. Since the information contained in the unla-
beled samples is effectively utilized, the mean vectors
are more reliable.

Afterward, we define the new scatter matrices:

Sb ¼ ∑
K

i¼1
mi ui−uð Þ ui−uð ÞT

¼ X ∑
K

i¼1
mi

epi−~p� � epi−~p� �T� �
XT

¼ X Sb
∼
XT

ð15Þ

where mi ¼ ∑
N

j¼1
pij,

Sw ¼ ∑
k

i¼1
∑
N

j¼1
pij x j−ui
� �

x j−ui
� �T

¼ X ∑
k

i¼1
∑
N

j¼1
pij hij−

epi� �
hij−
epi� �T" #

XT

¼ X Sw
∼
XT

ð16Þ

St ¼ ∑
k

i¼1
∑
N

j¼1
pij x j−u
� �

x j−u
� �T

¼ X ∑
k

i¼1
∑
N

j¼1
pj

i hij−~p
� �

hij−~p
� �T" #

XT

¼ X St
∼
XT

ð17Þ

where hij is expressed as follows:

hij ¼
1; i ¼ j
0; else

�
ð18Þ

Compared with the standard LDAmethod, we redefine the
mi in the between-class scatter matrix. In addition, the class
probability pij is added as the weight coefficient in the within-
class and total-class scatter matrices. The larger the class prob-
ability is, the greater the impact on the scatter matrices is. The
new LDA method controls the impact of the unlabeled sam-
ples by the class probabilities. Thus, the reliability of the un-
labeled samples is improved.

When constructing the generalized Rayleigh quotient
optimization function, we can use any two scatter ma-
trices, and one of the common ways is expressed in Eq.
(19).

J ¼ WTSwW
WTSbW

ð19Þ

where W = (w1, w2,⋯, wK) denotes the projection matrix.
Since both the numerator and denominator of Eq. (19)
are matrices, the optimization function cannot be
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optimized as a scalar function. Therefore, an alternative
optimization function is adopted:

J* ¼ ∏
K

i¼1

wT
i Sbwi

wT
i Swwi

ð20Þ

According to the nature of the generalized Rayleigh
quotient, the minimum value of J∗ is the minimum ei-

genvalue of S−1w Sb. Afterward, the unsupervised compo-
nent of the loss function for CNN is obtained, as shown
in Eq. (21).

min J*
� � ¼ min eig S−1w Sb

� �	 
 ð21Þ

Because of the simplicity and convergence rate of the
cross-entropy function, we utilize it to construct the super-
vised component of the loss function for CNN, as shown in
Eq. (22).

E0 ¼ −
1

N
∑
x
∑
K
yk lnak þ 1−ykð Þln 1−akð Þ ð22Þ

where (y1, y2,⋯, yK) represents the expected output of CNN
and (a1, a2,⋯, aK) denotes the actual output. Based on Eqs.
(21) and (22), the loss function of CNN is the sum of the two
components:

E ¼ −
1

N
∑
x
∑
K
yk lnak þ 1−ykð Þln 1−akð Þ

� �
þmin eig S−1w Sb

� �	 
 ð23Þ

After the training process is finished, we use the well-
trained CNN to predict the labels of the testing samples.

Experiments

The experiments consist of two parts. We first discuss
the effectiveness of the relevant steps in our method.
Then we compare the performance of our method with
other semi-supervised methods. The experiments are
performed on the Moving and Stationary Target
Acquisition and Recognition (MSTAR) dataset which
contains multiple types of targets. In our experiments,
we choose ten types of targets: 2S1, ZSU234, BRDM2,
BTR60, BMP2, BTR70, D7, ZIL131, T62, and T72.
Figure 3 shows the SAR and optical images of each
type. Although the optical images are distinct from each
other, the SAR images are difficult to be recognized
because of the imaging nature. The dataset used in this
paper consists of the training and testing datasets. The
detailed information is listed in Table 1.

Evaluation of our Method

Evaluation of the New LDA Method

A new LDA method is designed to utilize the unlabeled
samples. To verify the effectiveness of the new LDA
method, we compare the overall accuracy and the
Kappa score of our method with the supervised CNN
method which only utilizes the labeled samples. The
overall accuracy refers to the ratio of the number of
correctly recognized samples to the number of all the
samples. The calculation of Kappa score is based on the
confusion matrix which can well represents the recogni-
tion accuracy of each class. The definition of Kappa
score is shown in Eq. (24), where po is the relative
observed agreement between the recognition results of
the testing data and the real labels and pe represents the
hypothetical probability of the chance agreement.

k ¼ po−pe
1−pe

ð24Þ

In the experiments, the training dataset is divided into a
labeled dataset L and an unlabeled dataset U. We ran-
domly select the same number of the samples from each
class in the training dataset and add them to L, while
the remaining samples are added to U. We conduct a set
of experiments under six different partitions, and the
numbers of samples in L and U are shown in Table 2.
We adopt Adam optimizer when training the CNN, and
the parameters are set experimentally as follows: η = 0.001,
β1 = 0.9, and β2 = 0.99. When performing the thresholding
processing on the class probabilities, the value of t is set to
0.2. We repeat the experiments for ten times and the average
results are shown in Table 3.

As can be seen, the overall accuracy and the Kappa score of
our method are higher than the supervised CNN meth-
od. The fewer the labeled samples are, the more signif-
icant the difference of the performance is. This is be-
cause our method makes effective use of the unlabeled
samples. As a result, the generalization ability of our
method is enhanced and the overall accuracy and the
Kappa score are improved. As the number of labeled
samples increases, the generalization ability of the
CNN model is augmented; hence, the performance dif-
ference between the two methods decreases.

Next, we use visual figures to illustrate the effectiveness of
the new LDA method. We extract the feature vectors of the
testing samples outputted by our model and the supervised
CNN model. Then we transform the feature vectors to two-
dimensional ones using the t-Distributed Stochastic Neighbor
Embedding (t-SNE) method. In this experiment, we adopt
four different partitions in Table 2 to train the two models.
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The distribution of the feature vectors outputted by our model
and the supervised CNN model are shown in Fig. 4. Different
colors represent different classes. It can be seen that compared
with the supervised CNN method, our method can effectively
reduce the within-class distance and increase the between-
class distance. This means that the recognition accuracy of
our method is improved, which is consistent with the experi-
mental results shown in Table 3.

Evaluation of the Thresholding Processing

After the class probabilities have been obtained, thresholding
processing is applied to improving the reliability of the
unlabeled samples. We will discuss the effectiveness of
the thresholding processing in this section. We train our
model under two different partitions in Table 2, and the

number of the samples in U is 2347 and 1947, respec-
tively. In this experiment, we utilize the softmax func-
tion to calculate the class probabilities of the unlabeled
samples. Then the RF value of the unlabeled samples is
obtained based on the class probabilities and the real
labels. We regard the samples with the RF value greater
than 0.9 as reliable samples, and the remaining samples
are regarded as unreliable samples. In the thresholding
processing, we set the threshold t as 0, 0.2, 0.7, and 1,
respectively. During the experiment, we record the num-
bers of the reliable samples, unreliable samples, and
available samples in U. The experimental results are
shown in Table 4.

Compared with the case of t = 0, the number of the unreli-
able samples is reduced when t = 0.2, and the number of the
reliable samples is increased. Hence, the thresholding

(0)2S1

(5)BMP2

(2)BRDM-2 (3)BTR60 (4)BTR70

(6)D7 (8)T62 (9)T72(7)ZIL131

(1)ZSU234

Fig. 3 The SAR and optical
images of ten types of targets in
the MSTAR dataset

Table 1 The training and testing
datasets in our experiments Type Tops Model Training set Testing set

Depression Number Depression Number

2S1 Artillery B_01 17° 299 15° 274

ZSU234 D_08 17° 299 15° 274

BRDM2 Truck E_71 17° 298 15° 274

BTR60 K10YT_
7532

17° 256 15° 195

BMP2 SN_9563 17° 233 15° 195

BTR70 C_71 17° 233 15° 196

D7 92V_13015 17° 299 15° 274

ZIL131 E_12 17° 299 15° 274

T62 Tank A_51 17° 299 15° 273

T72 #A64 17° 232 15° 196

Sum:2747 Sum:2425
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processing can effectively improve the reliability of the unla-
beled samples. However, if the threshold continues to in-
crease, the number of the available samples will be reduced.
That is because if the maximum probability of a sample is less
than the threshold, all the probabilities of the sample will be
set to 0. As shown in Fig. 1, the unlabeled samples are utilized
based on the class probabilities and the new LDAmethod. The
unlabeled samples whose class probabilities are all set to 0
will not be utilized in the training process. Therefore, as the
threshold increases, the number of the available unlabeled
samples drops.

Next, we will analyze the performance of our method with
different thresholds. The experimental results are shown
in Fig. 5. When the number of the labeled samples is
less than 500, the performance of our method is better
while the threshold is set to 0.2. As the number of the
labeled samples increases, the recognition accuracy is
almost the same with different thresholds. This is be-
cause the generalization ability of the CNN model is
weak when the labeled samples are insufficient. Compared
with the case of t = 0, setting t = 0.2 helps to improve the

reliability of the unlabeled samples. Thus, the recognition ac-
curacy is improved. However, if we continue to increase the
threshold, the number of the available unlabeled samples
drops and the recognition accuracy becomes worse. As the
number of the labeled samples increases, the generalization
ability of the CNN model is improved. As a result, the reli-
ability of the unlabeled samples is improved, and the impact of
the thresholding processing becomes weaker. Thus, in order to
achieve the best recognition performance, the threshold
should be set to 0.2.

Comparison With Other Semi-Supervised Methods

In this section, we compare the performance of our method
with semi-supervised ladder network model [29], Pi model,
and temporal ensembling model [30]. The semi-supervised
ladder network model combines the semi-supervised learning
with deep learning methods. Based on the self-ensembling
method, the Pi and temporal ensembling models are both
semi-supervised CNN methods.

Recognition Accuracy

In this section, we compare the overall accuracy of
these methods. As shown in Fig. 6, our method outper-
forms the semi-supervised ladder network. The reason is
that the ladder network is composed of fully connected
layers whose feature extraction ability is weaker than
the CNN model. Our method is also superior to the
other two models. This is because the Pi and temporal
ensembling models use the CNN to generate the pseudo

Table 3 The performance of the supervised CNN method and our method under different partitions of the training dataset

Training set L:300, U:2447 L:400, U:2347 L:500, U:2247 L:600, U:2147 L:800, U:1947 L:1000, U:1747

Method CNN Ours CNN Ours CNN Ours CNN Ours CNN Ours CNN Ours

2S1 0.70 0.73 0.68 0.79 0.77 0.84 0.83 0.87 0.84 0.89 0.91 0.95

BMP2 0.64 0.69 0.74 0.85 0.81 0.95 0.88 0.92 0.89 0.95 0.91 0.97

BRDM2 0.63 0.77 0.77 0.86 0.84 0.88 0.86 0.90 0.91 0.92 0.86 0.95

BTR70 0.58 0.74 0.76 0.89 0.79 0.89 0.81 0.90 0.89 0.94 0.88 0.96

BTR60 0.64 0.67 0.81 0.88 0.79 0.86 0.86 0.87 0.90 0.93 0.91 0.95

D7 0.88 0.89 0.91 0.92 0.96 0.97 0.96 0.96 0.97 0.98 0.99 0.98

T62 0.64 0.73 0.76 0.83 0.79 0.81 0.87 0.87 0.86 0.89 0.91 0.94

T72 0.55 0.64 0.70 0.82 0.80 0.87 0.83 0.87 0.84 0.92 0.89 0.94

ZIL131 0.59 0.71 0.75 0.87 0.77 0.86 0.74 0.86 0.83 0.90 0.88 0.92

ZSU234 0.75 0.81 0.86 0.90 0.91 0.90 0.91 0.93 0.94 0.96 0.96 0.97

Overall accuracy 0.67 0.74 0.78 0.86 0.83 0.88 0.85 0.90 0.89 0.93 0.91 0.95

Kappa score 0.63 0.71 0.75 0.85 0.81 0.87 0.84 0.88 0.87 0.92 0.90 0.95

The supervised CNN method only utilizes the labeled samples while our method utilizes both the labeled and unlabeled samples. The better overall
accuracies and Kappa scores between the two methods are indicated in bold

Table 2 Numbers of
samples in L andU under
different partitions of the
training dataset

Number of L Number of U

1 300 2447

2 400 2347

3 500 2247

4 600 2147

5 800 1947

6 1000 1747
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labels of the unlabeled samples. However, the recogni-
tion accuracy will be reduced if the pseudo labels are
incorrect. In contrast, our method can accurately esti-
mate the class probabilities of the unlabeled samples.
Based on the class probabilities, the information contained
in the unlabeled samples is well utilized. As a result, the rec-
ognition accuracy is increased.

Training Time

To evaluate the computation complexity of our method
and the other three semi-supervised methods, we calcu-
late the average training time. We use 600 labeled sam-
ples and 2147 unlabeled samples to train the four
methods. The number of the epochs is set to 400. The
experiments are implemented with the Pytorch 0.3.1
framework. And the main configurations of the comput-
er are GPU: Tesla K20c, video memory: 4G, operating
system: Ubuntu 16.04.

As shown in Table 5, the average training time of
our method is 2. 53 s/epoch, much less than the semi-
supervised ladder network. The reason is that the struc-
ture of the ladder network is more complex than the
CNN used in our method. Thus, there are more param-
eters that need to be trained in the ladder network,

resulting in longer training time. Besides, the average
training time of the Pi and temporal ensembling models
is less than our method. This is because the Pi and
temporal ensembling models utilize the CNN to generate
the pseudo labels of the unlabeled samples. Afterward, the
unsupervised component of the loss function is obtained based
on the pseudo labels. Thus, the computation complexity of the
two methods is less than our method. However, our method
can effectively maintain the reliability of the unlabeled sam-
ples. Although the computation complexity of our method is
increased, the recognition accuracy is also improved.

Conclusion

Inspired by the neural network structure and the semi-
supervised learning mechanism of the human cognitive
system, a new semi-supervised CNN method is present-
ed in this paper. In the training process, the information
contained in the unlabeled samples is integrated into the
loss function of CNN relying on a new LDA method.
Specifically, we utilize the CNN to obtain the class
probabilities of the unlabeled samples and then adopt
the thresholding processing to optimize the class proba-
bilities. The experimental results on the MSTAR dataset

( ) CNN:

(1) L:400 (2) L:600            (3) L:800 (4) L:1000

( ) Ours:

(5) L:400, U:2347     (6) L:600, U:2147     (7) L:800, U:1947   (8) L:1000, U:1747

Fig. 4 The distribution of the
feature vectors outputted by our
model and the supervised CNN
model. The first row represents
the supervised CNN model’s
output and the second row
represents our model’s output.
Different colors represent
different classes

Table 4 The numbers of the
reliable samples, unreliable
samples, and available samples in
the unlabeled dataset with
different thresholds

Training set L:400, U:2347 L:800, U:1947

Threshold t = 0 t = 0.2 t = 0.7 t = 1 t = 0 t = 0.2 t = 0.7 t = 1

Unreliable samples 329 259 198 20 125 112 80 8

Reliable samples 2018 2088 2034 891 1822 1835 1841 1646

Available samples 2347 2347 2232 911 1947 1947 1921 1654
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demonstrate that the thresholding processing can im-
prove the reliability of the unlabeled samples. Based
on the optimized class probabilities, the scatter matrices
of the new LDA method are designed to introduce the
unlabeled samples in the loss function of CNN. The
distribution of the feature vectors verifies that the new
LDA method can reduce the within-class distance and

1 2

3 4

5 6

Fig. 5 The recognition accuracy
of our method with different
thresholds and different training
dataset partitions

Fig. 6 The recognition accuracy of our method, temporal ensembling
model, Pi model, and semi-supervised ladder network with different
partitions of the training dataset

Table 5 The average training time of our method, temporal method, Pi
model, and semi-supervised ladder network. All the four methods are
trained with 600 labeled samples and 2147 unlabeled samples

Methods Training time (s/epoch)

Our method 2.53

Temporal ensembling 1.56

Pi model 2.45

Semi-supervised ladder network 5.08

Cogn Comput



increase the between-class distance. As a result, our
method can effectively improve the SAR ATR accuracy
when the labeled samples are insufficient and outper-
forms other semi-supervised methods.
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