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Abstract. The traditional classification method based on supervised learning
classifies remote sensing (RS) images by using sufficient labelled samples.
However, the number of labelled samples is limited due to the expensive and
time-consuming collection. To effectively utilize the information of unlabelled
samples in the learning process, this paper proposes a novel semi-supervised
classification method based on class certainty of samples (CCS). First, the class
certainty of unlabelled samples obtained based on multi-class SVM is smoothed
for robustness. Then, a new semi-supervised linear discriminant analysis
(LDA) is presented based on class certainty, which improves the separability of
samples in the projection subspace. Finally, the nearest neighbor classifier is
adopted to classify the images. The experimental results demonstrate that the
proposed method can effectively exploit the information of unlabelled samples
and greatly improve the classification effect compared with other state-of-the-art
approaches.
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1 Introduction

With the rapid development of the remote sensing (RS) technology, the higher-
resolution and more informative RS images can be acquired, and are already used in
target surveillance, disaster relief, environmental protection and etc. [1–3]. The process
of RS images interpretation consists of three parts: target detection, image segmentation
and image classification [4, 5]. Besides, image classification is the most critical
step. However, since the sample labeling for RS image is time-consuming, it’s difficult
to achieve accurate classification of RS images when the labelled samples are insuf-
ficient, which has become one of research hotspots [6, 7].

Generally, the working mechanism of human cognitive system have inspired
researchers to improve the classification accuracy of images with insufficient labelled
samples. Since most of the information received by the brain is unlabelled, the human
cognition is a semi-supervised learning process, where the unlabelled information is
utilized based on the priori knowledge. Inspired by this, many semi-supervised learning
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methods have been presented, such as generative mode, semi-supervised SVM [8],
graph-based model [9], self-training model and co-learning model [10]. For the semi-
supervised algorithms, unlabelled samples are used to enlarge initial labelled samples
set and make the classification surface pass through the space with sparse samples. In
[11], the transductive support vector machine (TSVM) is developed to search the
optimal classification surface based on margin maximization by iteratively assigning
the sample positive label or negative one. Persello and Bruzzone present a progressive
semi-supervised SVM with diversity (PS3VM-D) to make candidate samples within
and closer to the margin band [12]. Then, samples are incrementally selected among the
candidates considering the kernel cosine-angular similarity. Based on co-training
model, Zhou designed a tri-training algorithm by training three classifiers. Then,
reliable unlabelled samples are selected by one classifier and added to the labelled
samples set of the other two classifiers in an iterative way [13]. Although the afore-
mentioned algorithms are proved to be effective experimentally, semi-supervised
learning methods are not always helpful because of the strict requirements of data
distribution, selection method and labeling method for unlabelled samples.

To effectively improve RS images classification performance, this paper proposes a
novel semi-supervised classification method by utilizing unlabelled samples based on
class certainty of samples (CCS). Different from other semi-supervised algorithms,
CCS initially assigns the class certainty to unlabelled samples and integrates it to the
scatter matrixes of linear discriminant analysis (LDA). The new scatter matrixes can
effectively describe the true characteristic distribution, which makes samples more
separable in the projection subspace. Since the class certainty is used to measure the
class reliability of samples, the unlabelled samples with high reliability play a more
important role than those with low reliability in CCS. To ensure the sufficient class
reliability of unlabelled samples in the subsequent semi-supervised process, the class
certainty is smoothed through normalization and threshold considering the complicated
distribution of samples. As a result, the performance of CCS is greatly improved.

The rest of this paper is organized as follows. Section 2 describes the proposed
method in detail. The experiments for the SAR targets classification are provided in
Sect. 3 and the conclusions are drawn in Sect. 4.

2 Proposed Method

In this part, we first present the related definition. The training samples X ¼ ½L; U� 2
Rd�N are divided into two parts according to the label of samples. Let L ¼
½x1; x2; � � � ; xl� 2 Rd�l be the feature matrix of labelled samples with label vector
½y1; y2; � � � ; yl�, yi 2 f1; 2 � � � ; kg and U ¼ ½xlþ 1; xlþ 2; � � � ; xlþ u� 2 Rd�u be the fea-
ture matrix of unlabelled samples. N ¼ lþ u denotes the number of training samples
and the test set is T . Then, as shown in Fig. 1, the proposed novel semi-supervised
method (CCS) consists of four main ingredients.
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2.1 Getting the Class Certainty of Unlabelled Samples

Dimension Reduction of Training Data. In Fig. 1, the inputs of CCS are the original
RS training data L and U in high-dimension. To get the class certainty information, the
computational complexity and the dimension of training data should be reduced. Thus,
based on KLDA algorithm, the projection characteristics L1 and U1 are obtained.

Computing the Class Certainty Based on Multi-class SVM. The output of SVM can
effectively measure the class certainty of samples. After the dimension reduction, SVM
can be trained based on the labelled samples L1. Because the samples are generally
multi-class, we construct multi-class SVM based on the “one-against-one” approach.
To express more clearly, an example of obtaining the class m certainty of unlabelled
samples is shown in Fig. 2.

In Fig. 2, Lm1 denotes labelled samples of class m with reduced dimension. Let Lm1
and samples of the other classes be positive labels and negative labels, respectively.
Then, after training k − 1 binary SVM between Lm1 and other classes of samples, the
corresponding output vector is derived by passing U1 to every binary SVM. For
example, f m;m�1 ¼ ðwT/ðU1Þþ bÞT denotes the output vector of the SVM trained by
Lm1 and Lm�1

1 . To get the class m certainty f mU , the output vectors are added based on the
voting method. Similarly, other class certainty f i; i ¼ 1; 2; � � � ; k; i 6¼ m can be
obtained according to the corresponding implementation.

Training data

Test data Classification

New semi-supervised LDA

Smooth processing of  the class certainty

Getting the class certainty of U

Dimension reduction 
of Training data 

L U

Computing the class 
certainty based on 
multi-class SVM

Normalization and 
threshold processing

Merge the class 
certainty of L

 semi-supervised LDA

Classification Label
of TT

Fig. 1. Flowchart of the proposed method CCS.
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2.2 Smooth Processing of the Class Certainty

Normalization and Threshold Processing. Since the class i certainty f iUði 2
f1; 2; � � � ; kgÞ contains elements ranged from less than 0 to larger than 1, they should
be normalized and threshold processed before utilizing. Accordingly, we utilize the
min-max standard method, which can be written as

piU ¼ f iU �min
max�min

; i 2 f1; 2; � � � ; kg ð1Þ

where piU represents the class i certainty of U after normalization processing. Then, we
choose threshold t 2 ½0; 1�. If the element of piU is less than t, we set it to 0.

piU;j ¼
0; piU;j\t
piU;j; others

�
; i 2 f1; 2 � � � ; kg; others j 2 f1; 2; � � � ; ug ð2Þ

where piU;j denotes the j-th element of vector piU . The greater threshold t means higher
reliability requirement for the utilized unlabelled samples.

Merge the Class Certainty of Labelled Samples. Assuming that Li; i 2
f1; 2; � � � ; kg is the original labelled sample set of class i. It’s obvious that the cor-
responding class i certainty is 1 and the other class certainty is 0. Thus, the class
i certainty vector piL of L can be derived as,

piL;j ¼
1; yj ¼ i
0; yj 6¼ i

�
; i 2 f1; 2; � � � ; kg; j 2 f1; 2; � � � ; lg ð3Þ
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Fig. 2. Flowchart of obtaining the class m certainty of unlabelled samples.
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where piL;j denotes the j-th element of vector piL and yj denotes the label of xj,

respectively. By combining piL and piU , the class i certainty vector of training data
X ¼ ½L; U� is obtained:

pi ¼ ½piL; piU �; i 2 f1; 2; � � � ; kg ð4Þ

2.3 New Semi-supervised LDA

In this section, we propose a novel semi-supervised LDA method by integrating class
certainty into the scatter matrixes so that the samples are more separable in the pro-
jection subspace. At first, we define the within-class mean vector ui and the total mean
vector u,

ui ¼

PN
j¼1

pijxj

PN
j¼1

pij

¼ X pij=
XN
j¼1

pij

 !
¼ X epi

u ¼

PK
i¼1

PN
j¼1

pijxj

PK
i¼1

PN
j¼1

pij

¼ X
XK
i¼1

pi=
XK
i¼1

XN
j¼1

pij

 !
¼ Xep

ð5Þ

where pij is the element of vector pi.
Next, to obtain the “generalized Rayleigh quotient” of semi-supervised LDA, the

new between-class scatter matrix Sb, within-class scatter matrix Sw and total-class
scatter matrix matrixes St are defined as:

Sb ¼
XK
i¼1

niðui � uÞðui � uÞT

¼ X½
XK
i¼1

mið~pi � ~pÞð~pi � ~pÞT �XT ¼ X~SbX
T

ð6Þ

where ni ¼
PN
j¼1

pij.

Sw ¼
Xk
i¼1

XN
j¼1

pijðxj � uiÞðxj � uiÞT

¼ X½
Xk
i¼1

XN
j¼1

pijðhj � ~piÞðhj � ~piÞT �XT ¼ X~SwX
T

ð7Þ
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St ¼
Xk
i¼1

XN
j¼1

pijðxj � uÞðxj � uÞT

¼ X½
Xk
i¼1

XN
j¼1

pijðhj � ~pÞðhj � ~pÞT �XT ¼ X~StX
T

ð8Þ

where hj 2 RN�1 is expressed as:

hj;i ¼ 1; i ¼ j
0; else

�
ð9Þ

and hj;i denotes the element of hj.
Since the new scatter matrixes have been proven to satisfy St ¼ Sb þ Sw, any two

scatter matrixes can be utilized to construct the “generalized Rayleigh quotient”.
Generally, it is expressed in the following criterion,

max
w

wTSbw
wTSww

ð10Þ

where w 2 Rd�ðk�1Þ is the projection matrix. Then, w can be calculated by (11)

Sbw ¼ kSww ð11Þ

The closed-form solution of w related to k − 1 characteristic vectors of S�1
w Sb.

2.4 Classification

After the dimension reduction, the test data will be classified. There are several clas-
sifiers to be selected, such as SVM, random forest, nearest neighbor classifier
(NNC) and so on. We adopts the NNC in this part because the training samples of the
same class in the projection subspace are very close, which makes the mean vectors
fully represent the characteristic information of every class. The mean vectors ~ui after
dimension reduction can be expressed as

~ui ¼ wTui; i 2 f1; 2; � � � ; kg ð12Þ

Then the class of test sample is determined by the nearest ~ui.

3 Experiment

In this section, the performance of the proposed method is investigated on the Moving
and Stationary Target Acquisition and Recognition (MSTAR) database. The discussion
of CCS is performed initially to demonstrate the feasibility of CCS-related steps.
Subsequently, the effectiveness of the proposed method is verified by comparing CCS
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with other semi-supervised algorithms. As shown in Fig. 3, we choose BMP2 (sn-c21),
T72 (sn-132) and BTR70 (sn-c21) as the training data in the following experiments.
Meanwhile, we select BMP2 (sn-c9566), T72 (sn-s7) and BTR70 (sn-c70) as the
testing data. Table 1 lists the number of vehicles in the aforementioned dataset.

3.1 Discussion of CCS

To demonstrate the effectiveness of the semi-supervised LDA method, we compare it
with the LDA method which only utilizes the labelled samples. We select 10% of the
training data as the labelled samples and the remaining data as the unlabelled samples.
As shown in Fig. 4, test-BMP represents a testing sample selected from the BMP
vehicles. BMP, BTR, T72 denote the class mean vectors of the three types of vehicles
obtained by the LDA method, and u-BMP, u-BTR, u-T72 denote the class mean
vectors obtained by the semi-supervised LDA method. The direction of arrow repre-
sents the class judgment result of the test-BMP.

In Fig. 4(a), since test-BMP is closest to the mean vector of T72, the classification
result is mistaken. Different from LDA, semi-supervised LDA can represent the truer
feature distribution of samples by absorbing the characteristic information of unlabelled
samples. As presented in Fig. 4(b), the test-BMP is obviously closest to the u-BMP and
is correctly classified into BMP.

When obtaining the class certainty of unlabelled samples, we utilize the threshold
processing to ensure the sufficient class reliability. Next, we discuss the impact of
changing the threshold t on the performance of CCS. With the change of the percentage
of labelled samples, the overall accuracy of different threshold is shown in Fig. 5.

When the percentage of labelled samples is small, the performance of CCS with
t ¼ 0:2 is highest, and the performance with t ¼ 0 is the second highest. If the
thresholds are relative big, which are set as 0.7 and 1, the classification performance of
CCS is not good. The experimental result shows that when labelled samples are

(a) T72 (b) BMP2 (c) BTR70

Fig. 3. The SAR images of three classes of vehicles.

Table 1. Types and quantities of training data and testing data.

Training data Testing data

Type T72 BMP2 BTR70 T72 BMP2 BTR70
Model sn_132 sn_c21 sn_c71 sn_s7 sn_9566 sn_c70
Quantity 232 232 232 191 191 191
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insufficient, compared with t ¼ 0 which exploits all the class certainty information of
unlabelled samples, setting t as a small value helps to improve the classification per-
formance, which ensures the reliability of class certainty used in the semi-supervised
LDA.

3.2 Comparison with Other Semi-supervised Algorithms

In this section, we compare the performance of our method with that of the label
propagation (LP) [14], progressive semi-supervised SVM with diversity (PS3VM-D)
[12], constrained KMeans (C-KMeans) [15] and semi-supervised discriminant analysis

(a) LDA (b) semi-supervised LDA

Fig. 4. The effectiveness of the semi-supervised LDA method compared with the LDA method.

Fig. 5. Classification performance of CCS with different threshold setting.
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(SDA) [16]. As the percentage of labelled samples changes, the overall accuracy of
different methods can be derived, as shown in Fig. 6.

Obviously, the classification accuracy of CCS outperforms the other four semi-
supervised algorithms by at least 8% when the labelled samples are insufficient.
Generally, LP and PS3VM-D assign pseudo labels to unlabelled samples. However, the
wrong pseudo labels will cause a bad influence on subsequent classifier training pro-
cess. In terms of the C-KMeans, it can’t make full use the spectrum information by
adding constraints, which leads to little performance improvement. As for SDA, it
focuses on maintaining the neighborhood relationship between samples, but has a high
requirement of data distribution. Compared with the aforementioned four methods,
CCS not only utilizes the class information of labelled samples, but also reliably
absorbs the characteristic information of unlabelled samples through integrating the
class certainty of samples into LDA, which makes the classification performance more
stable and accurate.

4 Conclusion

To effectively solve the problem of RS images classification when labelled samples are
insufficient, this paper proposes a novel semi-supervised classification method (CCS).
There are three major findings:

(a) Based on the dimensional reduction of training samples and multi-class SVM
based learning, the class certainty information is obtained and assigned to unla-
belled samples for further processing.

(b) The pre-processed class certainty reassigns the weight for the unlabelled samples
by normalizing and threshold processing.

Fig. 6. Classification performance of CCS and the other four semi-supervised algorithms.
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(c) By combining class certainty, the proposed LDA can make full use of class
information of labelled samples while characterizing reliably unlabelled samples.

From the experiment results, we observe that the CCS significantly improves the
classification accuracy of RS images when the labelled samples are insufficient.
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