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Abstract—As the commercial launch of the fifth-generation
(5G) wireless communications gets near, the trend from Internet
of Things (IoT) to Internet of Everything (IoE) is emerging. Due
to the advantages of the high mobility, high line-of-sight (LoS)
probability and low labor cost, unmanned aerial vehicles (UAVs)
may play an important role in the future IoT communication
networks, e.g., data collection in remote areas. In this paper,
we study the three-dimensional (3D) placement and resource
allocation of multiple UAV-mounted base stations (BSs) in an
uplink IoT network, where the balanced task for the UAV-
BSs, the limited channel resource and the signal interference
are taken into consideration. In the considered system, the total
transmission power of IoT devices is minimized, subject to a
signal-to-interference-and-noise ratio (SINR) threshold for each
device. First, aiming to balance the task of each UAV, we propose
a clustering algorithm based on an improved K-means method
to divide IoT devices into several groups, so that the number
of devices in each group is roughly the same. Then, based on
matching theory, a Modified-Hungarian-Based Dynamic Many-
Many Matching (HD4M) algorithm is designed for assigning
sub-channels to IoT devices, which can efficiently mitigate the
interference. Finally, we jointly optimize the transmission power
of IoT devices and the altitudes of UAVs via an alternating
iterative method. Simulation results show that the total trans-
mission power decreases significantly after applying the proposed
algorithms.

Index Terms—Internet of Things, multi-UAV, resource alloca-
tion, energy-efficient, Hungarian Method, uplink transmission.

I. I NTRODUCTION

T HE development of Internet of Things (IoT) has a deep
influence in many aspects of life. Smart objects, like

mobile phones, vehicles, wearable devices, and sensors, are
expected to be connected and share information to each other
in the future IoT networks. It is perdicted that 75.44 billions
devices will be connected to the Internet in 2025 [1], and
this process is accelerated by the emergence of the fifth-
generation (5G) wireless communications. To truly enable the
IoT networks, problems related to data aggregation, security,
architecture of network, etc., require deeper investigation [2].
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Especially, the problem of collecting data from IoT devices is
rather challenging due to their heterogeneous characteristics
compared with conventional communication devices [3]. The
number of IoT devices is usually large, and they are usually
distributed in very large-area regions, e.g., hundreds of fire
sensors in the forest. Meanwhile, each IoT device normally
has a limited transmission ability, and thus its signal cannot
reach a far distance. With these limitations, common ground
base stations (BSs) may not cover all the IoT devices and
collect their data satisfactorily, while sending unmanned aerial
vehicles (UAVs) as temporary air BSs becomes an accessible
and cost-effective approach [4], [5].

Introducing UAVs to IoT communication networks has
many advantages. First, with the high mobility of UAVs, they
can be deployed to particular areas where the ground BSs can-
not cover. When ground BSs are damaged in disasters, UAVs
can also be used as the temporary replacements of ground
BSs to serve IoT devices [6]. Second, the higher hovering
altitudes of UAVs provide a higher probability of establishing
line-of-sight (LoS) links with ground devices, and thus the
quality of communication is enhanced, with energy saved
and coverage expanded at the same time [7], [8]. Besides,
UAVs have the superiority of flexible three-dimensional (3D)
deployment, since they can be rapidly deployed to the optimal
positions based on varying distributions of ground IoT devices.

Because of these advantages, UAVs play a key role in
energy-constrained IoT networks to extend the working hours
of devices and provide ubiquitous massive access [9]. Many
companies (such as SeeTree and Luck Stone) have employed
UAVs to collect and monitor sensor data on many fields
(e.g., farmland and mine monitoring). However, due to the
practical size, weight, and power (SWAP) constraints and
communication resources, the endurance and reliability may
be affected in UAV-aided IoT systems [10]. Recently, many
researchers have studied the key techniques and scenarios for
UAV-enabled IoT communications [11]–[22].

A. Related Works and Motivation

In [11]–[13], the placement and resource allocation of a
single-UAV BS were studied. The authors of [11] used an
iterative parameter-assisted block coordinate descent method
to maximize the minimal achievable rate of the ground devices,
and gave the power and bandwidth allocation scheme of the
UAV-BS. The authors of [12] proposed a low-complexity
algorithm to solve the placement of the UAV, and obtained
the similar performance as exhaustive search (ES) method. In
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[13], based on efficient differential evolution based method,
a low-altitude UAV platform was employed as both a mobile
data collector and an aerial anchor node to assist terrestrial BSs
in data collection and device positioning. Since the operation
time and battery of the UAV are limited and the number of IoT
devices is large in a widespread area, it is important to deploy
multiple UAVs and design an effective cooperative strategy for
providing seamless and long-term services [14].

Due to the strong applicability and high complexity of the
multiple-user multiple-UAV network [15], [16], the studies
of multi-UAV aided IoT systems are challenging and have
gotten a lot of attention. The authors in [17] proposed an
efficient iterative algorithm for solving the user scheduling
and association, UAV trajectory, and transmission power by
applying the block coordinate descent and successive convex
optimization techniques. In [18], multiple UAVs served as
aerial BSs to collect data from ground IoT devices. By
exploiting dynamic clustering and optimal transport theory,
the authors minimized the total transmission power of the IoT
devices. In [16], a comprehensive overview for UAV-enbled
mobile edge computing (MEC) networks was presented in
terms of the potential application scenarios, three UAV-enabled
MEC architectures, implementation issues and challenges. The
authors in [19] designed an energy-efficient MEC network
with multiple UAVs via jointly optimizing user association,
power control, computation capacity allocation, and location
planning. In [20], the authors studied the uplink communi-
cation from ground devices to UAV-BSs. With the proposed
modularity-based dynamic clustering algorithm relying on a
modified Louvain method, the transmission powers of the
ground devices were effectively saved. However, for simplicity
in analytical analysis, the authors in [17] and [18] assumed that
the altitude of UAVs is fixed, and the interference between
IoT devices is neglected because of the sufficient spectrum
bandwidth in [18]–[20]. In [21], the optimal 3D locations
of UAVs were investigated under the interference between
the UAV BSs. In addition, the authors of [22] developed an
energy-efficient IoT network with multiple UAVs in the inter-
ference scenario and interference-free scenario, respectively.
The association, uplink power control and trajectory planning
problems were studied in these scenarios.

In a real-world scenario, some practical requirements should
be considered. For example, the access from a large number
of users to a UAV will lead to network congestion because
of the limited capacity. Communication resources of other
UAVs may be wasted. Nevertheless, the task of each UAV was
unlimited and the sub-channel assignment was not considered
in the above works. Common clustering method (e.g., K-
means) for the IoT devices in [18], [20] and [22] cannot tackle
the network congestion issue and more specific clustering
methods need to be further investigated. Besides, considering
a generic UAV communication system with co-channel UAVs
communicating with their respective ground users [23], the
design of a dynamic sub-channel assignment strategy to reduce
the co-channel interference is a critical challenge. The authors
of [24] introduced the matching theory for addressing pertinent
resource management problems in emerging wireless networks
and showed that the matching theory could provide a good and

stable channel allocation scheme in cognitive radio networks.
In [25], the authors designed a many-many matching algorithm
for finding the sub-optimal sub-channel assignment strategy to
manage intragroup interference and intergroup interference.

B. Contributions

Motivated by the above works, in this paper, we study a
generic UAV-aided IoT network where multiple UAVs are
deployed to collect data from ground IoT devices considering
three practical conditions, i.e., the balanced task for the UAV-
BSs, the limited channel resource and the signal interference.
To the best of our knowledge, this optimization issue has not
been studied in the relevant works. The main contributions of
this paper are summarized as follows:

1) We model the uplink transmission problem between mul-
tiple UAV-BSs and IoT devices to minimize the total
transmission power with mentioned practical conditions.
Specifically, all the UAVs share the same frequency spec-
trum, the task of each UAV is approximately equivalent,
and the number of sub-channels is limited.

2) To solve the mixed-integer nonconvex problem, we divide
it into three parts to find an overall sub-optimal solution.
First, we propose a modified algorithm based on K-means
to evenly assign all the IoT devices to the UAVs. The
probability of an idle sub-channel in the system can
be greatly reduced by applying this algorithm, which
means that high spectrum efficiency is guaranteed. Then,
inspired by the matching theory [24], to mitigate the inter-
ference of sharing sub-channels between IoT devices, we
design a novel algorithm, i.e.,Modified-Hungarian-Based
Dynamic Many-Many Matching(HD4M) algorithm to
determine the sub-channel assignment. Finally, the power
control of IoT devices and the altitudes of UAVs are
jointly optimized by using an alternating iterative method.

3) We analyze the performance of the proposed solution in
terms of the feasibility, convergence and complexity. Ex-
tensive simulations show the faster convergence, higher
reliability and effectiveness of the proposed algorithms
compared with the benchmark scheme. Meanwhile, the
proposed solution for 3D positions of UAVs can achieve
a performance close to the ES method. Furthermore, the
results also reveal a fundamental trade-off between the
number of UAVs and the power consumption of IoT
devices.

C. Organization

The rest of this paper is organized as follows. In Section II
we model the scenario and formulate the problem. In Sections
III, IV, and V, we introduce the corresponding algorithms to
solve the three subproblems, respectively. Then, we analyze
the feasibility, convergence, and complexity of the solutions
and algorithms in Section VI. Section VII presents the simu-
lation results to demonstrate the performance of the proposed
design. Finally, we conclude the paper in Section VIII.

Notation: a, a, A andA denote a scalar, a vector, a matrix
and a set, respectively.‖a‖ denotes the Frobenius norm ofa.
⌊a⌋ denotes the largest integer that is not larger thana, and
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Fig. 1. Illustration of the considered system, whereN UAV mounted BSs
serveM ground IoT devices inK sub-channels.

⌈a⌉ denotes the smallest integer that is not less thana. [A]i,j
denotes the entry in thei-th row andj-th column of matrix
A.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, we consider a network of IoT devices
associated to multiple hovering UAVs through uplink com-
munication. There areM IoT devices andN UAVs in the
system, whose index sets are denoted asM = {1, 2, . . . ,M}
andN = {1, 2, . . . , N}, respectively. The locations of device
m ∈ M and UAV n ∈ N are given byxm = (xm, ym) and
vn = (xuav

n , yuavn , hn), respectively. Note that the locations of
theM devices are static and prior known by a control center.

Without loss of generality, we assume that each UAV serves
more than one IoT device and all UAVs share the same
frequency spectrum. Due to the limitation of UAVs’ service
capability, we assume that all devices are evenly scheduled to
UAVs, i.e., the number of devices that a UAV can serve isM

N
.

If M is not multiple ofN , the number of devices that associate
to a UAV would be

⌊

M
N

⌋

or
⌈

M
N

⌉

. We assume that there are
K orthogonal sub-channels for each UAV, whose index sets
are denoted asK = {1, 2, . . . ,K}, and we need to allocate
one sub-channel to serve one IoT device. LetK =

⌈

M
N

⌉

,
which means that we want to use the minimal number of
sub-channels to serve all the IoT devices1. This leads to the
situation that any two groups of devices served by different
UAVs will interfere with each other, while interference does
not exist between devices in the same group. To be exact, if
devicem1 is served by UAVn1 in sub-channelk ∈ K, which
is also allocated to devicem2 that associates to UAVn2, the
two devices will interfere with each other.

First, we introduce the channel response from IoT devices
to UAVs. In the considered system, both LoS and non-line-of-
sight (NLoS) links are possible. While it has been discussed
in Section I that the probability of LoS link increases as the
height of the UAV-mounted BSs increases, the ground devices
could still face NLoS links with UAVs because of the uncertain

1In practice, K can be larger than⌈M/N⌉. When K is larger, the
probability of interference is lower and the design becomes easier, but the
spectrum efficiency is lower. Thus,K = ⌈M/N⌉ is in fact the harshest
condition here, and the proposed solution in this paper can be easily extended
to the easier cases whenK > ⌈M/N⌉.

obstacles like buildings, trees or mountains. According to [26],
the LoS probability from devicem to UAV n, which could be
affected by the environment, locations of ground devices and
UAVs, is denoted as

PLoS
m,n =

1

1 + ρ exp [−ϑ (θm,n − ρ)]
, (1)

whereρ andϑ are the constants related to the environmental
condition and the carrier frequency, respectively [27].θm,n is
the elevation angle from devicem to UAV n, which is given
by θm,n = 180

π
tan−1

(

hn

rm,n

)

with the altitude of UAV n

denoted byhn and the horizontal distance from devicem to

UAV n denoted asrm,n =

√

(xm − xuav
n )2 + (ym − yuavn )2.

Correspondingly, the NLoS probability isPNLoS
m,n = 1−PLoS

m,n .

The path loss of the LoS and NLoS links can be expressed
as [28]

LLoS
m,n =

(

4πfcdm,n

c

)α

ηLoS, (2)

LNLoS
m,n =

(

4πfcdm,n

c

)α

ηNLoS, (3)

wheredm,n =

√

(xm − xuav
n )

2
+ (ym − yuavn )

2
+ h2

n is the
3D distance between devicem and UAV n, α is path loss
exponent,ηLoS andηNLoS are excessive path loss coefficients,
fc is carrier frequency, andc is the speed of light. Taking the
randomness of the LoS and NLoS links into consideration, we
use the average path loss to describe the loss of transmission
power. Based on (1)-(3), we have the average path loss from
devicem to UAV n given by

Lm,n = PLoS
m,n L

LoS
m,n + PNLoS

m,n LNLoS
m,n

= PLoS
m,n

(

4πfcdm,n

c

)α

ηLoS + PNLos
m,n

(

4πfcdm,n

c

)α

ηNLoS

=
[

PLoS
m,n ηLoS + PNLoS

m,n ηNLoS

]

(

4πfcdm,n

c

)α

.

(4)
Therefore, the average channel gain between devicem and
UAV n is gm,n = 1

Lm,n
.

Then, we model the interference caused by the devices shar-
ing the same sub-channels. Here we define a set{cm,n,k} to
indicate the association from an IoT device to a UAV. If device
m is served by UAVn in sub-channelk, we setcm,n,k = 1.
Otherwisecm,n,k = 0. For different devices that associate with
the same UAV, they are allocated with different sub-channels.
If device m1 served by UAVn1 shares sub-channelk with
devicem2 served byn2, i.e., cm1,n1,k = cm2,n2,k = 1, it
indicates that the interference exists between the two devices.
Denoting a set of transmission powers as{pm, m ∈ M}, the
interference experienced by devicem that associates to UAV
n in sub-channelk can be denoted as

Im,n,k =

M
∑

i=1
i6=m

N
∑

j=1

ci,j,kpigi,n, (5)

wherepi is the transmission power of devicei. Then the SINR
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of devicem can be expressed as

γm,n,k =
pmgm,n

Im,n,k + σ2
, (6)

with σ2 as the variance of additive white Gaussian noise
(AWGN). In some multi-cell multi-user systems that maximize
the transmission capacity, the SINR requirement may not be
considered [25], [29]. However, to maintain the connectivity
of the IoT uplink network, each device should meet a certain
SINR requirement so that the receivers can demodulate the
signal [30], [31]. When the SINR requirement is satisfied, the
achievable rate of each device is also guaranteed, in which the
achievable rate of devicem is

Rm = log2

(

1 +

N
∑

n=1

K
∑

k=1

cm,n,kγm,n,k

)

. (7)

B. Problem Formulation

The target of our optimization problem is to minimize the
total transmission power of all the ground IoT devices. The
optimization problem is formulated as follows.

min
{cm,n,k},

{pm},{vn}

M
∑

m=1

pm (8)

s.t.

N
∑

n=1

K
∑

k=1

cm,n,kγm,n,k ≥ γ0, ∀m ∈ M, (8a)

⌊

M

N

⌋

≤
M
∑

m=1

K
∑

k=1

cm,n,k ≤

⌈

M

N

⌉

, ∀n ∈ N , (8b)

N
∑

n=1

K
∑

k=1

cm,n,k = 1, ∀m ∈ M, (8c)

M
∑

m=1

N
∑

n=1

cm,n,k ≤ N, ∀k ∈ K, (8d)

cm,n,k ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N , ∀k ∈ K, (8e)

0 ≤
N
∑

n=1

K
∑

k=1

cm,n,kpm ≤ Pmax, ∀m ∈ M, (8f)

hmin ≤ hn ≤ hmax, ∀n ∈ N . (8g)

Constraint (8a) indicates that the SINR of each device is no
smaller than the thresholdγ02 . Constraint (8b) requires that
all the UAVs serve approximately the equal number of devices.
Constraint (8c) indicates that each device is only associated
with one UAV through only one sub-channel. It also guarantees
that all devices will be served. Constraint (8d) ensures that
each sub-channel is shared byN devices at most. Constraint
(8e) indicates thatc is binary. Constraint (8f) indicates the
maximal transmission power of each devices, which is denoted
asPmax. Constraint (8g) indicates that the altitude of UAVs
is betweenhmin andhmax.

2In general, the data requirements for homogeneous IoT devices, such as
sensors or web cameras, are approximately uniform. Similar to [22], [30] and
[31], we set a uniform SINR threshold for IoT devices. The proposed method
can be used in different SINR constraint scenarios, while the solution may
not be optimal. More general case with different SINR thresholds will be
considered in our future work.

Problem (8) is a mixed-integer programming (MIP) prob-
lem, which is nonconvex. Therefore, the global optimal so-
lution is challenging to find. Next, a three-step algorithm is
proposed to find a sub-optimal solution of problem (8). In the
first step, we propose a clustering algorithm based on the K-
means strategy to determine the association between devices
and UAVs, with 2D locations of UAVs derived at the same
time3. Then we allocate sub-channels to devices using the
proposed HD4M algorithm. Finally, the transmission power
of each IoT device and the altitudes of UAVs are jointly
optimized.

III. I OT DEVICES CLUSTERING

In this section, we propose a clustering algorithm based on
the K-means strategy to evenly divide all the IoT devices into
N clusters/groups. As discussed in Section I, based on the
distance between devices and cluster centers, the original K-
means algorithm is an effective clustering strategy [33]. With
each UAV serving a cluster of devices, the K-means approach
may significantly mitigate the strong interference between two
closely located devices [22]. However, using the original K-
means algorithm may lead to an uneven clustering of IoT
devices, which means the numbers of devices in some clusters
may exceed the service capability of the UAV. As a result,
there will be serious interference between the IoT devices in
those clusters. Meanwhile, idle sub-channels may appear in
the cluster with a small number of devices, and thus frequency
spectrum resource is wasted. To overcome the drawback of the
original K-means strategy, we propose a modified K-means
clustering algorithm, ensuring that each UAV approximately
serves the same number of IoT devices. With the proposed
algorithm, the spectrum resource can be almost fully used.

Without loss of generality, we let the horizontal location of
each UAV,v2D

n = (xuav
n , yuavn ), be fixed at the center of each

cluster [28], wheren denotes both “UAV” and “cluster center”.
This placement can decrease the average path loss, and save
the transmission powers of IoT devices [25]. Then we define
am,n =

∑K

k=1 cm,n,k as the association between devicem
and UAV n. For each device, it can only associate one UAV,
so we haveam,n ∈ {0, 1} here. Withv2D

n = (xuav
n , yuavn ) and

r2m,n =
∥

∥

xm − v
2D
n

∥

∥

2
, the subproblem of evenly clustering

M IoT devices is expressed as

min
{am,n}

M
∑

m=1

N
∑

n=1

am,nr
2
m,n (9)

s.t.

⌊

M

N

⌋

≤
M
∑

m=1

am,n ≤

⌈

M

N

⌉

, ∀n ∈ N , (9a)

N
∑

n=1

am,n = 1, ∀m ∈ M, (9b)

3In multiple-user multiple-UAV scenarios, the problem of UAVs 3D de-
ployment is difficult and challenging [16], [23]. The grid search method as an
ES method can be used to find the optimal positions of UAVs [32]. However,
the ES method results in a high computational complexity. For simplicity, we
fix the horizontal positions of UAVs and optimize the altitudes of UAVs.
The performance of the proposed scheme compared to 3D optimiazation
deployment will be evaluated via the simulations in Section VII.
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am,n ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N . (9c)

Note that the clustering problem has been proven NP-
hard [34], which means subproblem (9) is also NP-hard. We
propose a three-step solution for subproblem (9).

Firstly, we use K-means++ to initialize the centers of all
the clusters, so that they are separated far enough from each
other [35].

Secondly, we associate theM devices to the nearest UAVs
in sequence. We definenup =

⌈

M
N

⌉

, ndown =
⌊

M
N

⌋

and
R = mod(M,N). Restricted by constraint (9a), there will
beR UAVs servingnup devices and(N −R) UAVs serving
ndown devices. In the association process, when a device is
to associate to its nearest UAV that has already servednup

devices, the device will change to associate to the nearest
UAV among remaining UAVs. In the end, we know that there
may exist devices whose associated UAVs are not the nearest
ones, and these devices may suffer from performance loss.
Therefore, we define a device associated to a UAV that is not
nearest to it as anuncommon device. Correspondingly, devices
that are associated to their nearest UAVs arecommon devices.
On the other hand, the association result of the second step
depends on the execution sequence of the devices. Thus, there
still exist a small space to improve the clustering operation.

Lastly, we further improve the performance of the uncom-
mon devices with an iterative process. In each iteration, we
first update the center of each cluster as the mean location of
the devices, and meanwhile update the uncommon devices.
Then, two operations, namely,giving operation and swap
operation, are conducted to adjust the association. For an
uncommon devicei, assume that UAVn1 and UAVn2 denote
its associated UAV and nearest UAV, respectively.

If the number of devices served by UAVn1 is larger
than that of devices served by UAVn2, we execute the
giving operation, i.e., we let devicei associate to UAVn2.
The operation improves the clustering performance and the
constraint (9a) is still satisfied.

If the number of devices served by UAVn1 is no larger
than that of devices served by UAVn2, we execute the swap
operation. Note that for each devicej that associates to UAV
n2, the swap for association between UAVsn1, n2 and devices
i, j, may decrease the value of the objective function in (9).
We define the set{rj} wherej ∈ {m|am,n2 = 1} to describe
the reduction of the objective function, in which

rj =
(

r2i,n1
+ r2j,n2

)

−
(

r2i,n2
+ r2j,n1

)

. (10)

Then, we find the optimal swap devicej∗ to minimize the
objective function, which is given by

j∗ = argmax
j

{rj} . (11)

It is worth noting that only whenrj∗ > 0, the association for
devicesi and j∗ are swapped. The iteration is repeated until
the objective function in (9) converges.

We summarize the above process in Algorithm 1. Sequential
device clustering is conducted in Steps 3-9. LetR0, where
R0 ≤ R, denote the actual number of clusters that have

⌈

M
N

⌉

devices when running Algorithm 1. IfR0 > R, there must

exist that a remaining UAVs serves less than
⌊

M
N

⌋

devices.
The iteration is conducted in Steps 10-26. The giving and
swap operations are conducted in Step 17 and Steps 19-23,
respectively.

Algorithm 1: IoT Device Clustering Algorithm

Input: {xm}, N .
Output: {am,n}, {v2D

n }.
1: Initialize R0 = 0 andN̂n = 0 as the number of devices

that UAV n serves. Setam,n to zero. Calculaterm,n.
Initialize L = ∅ as the set of uncommon devices.
Initialize nup, ndown andR.

2: Initialize locations of cluster centers{v2D
n } using

K-means++.
3: for m = 1 to M do
4: if R0 < R then
5: Find the nearest cluster centern with N̂n < nup,

and setam,n = 1. UpdateR0.
6: else
7: Find the nearest cluster centern with N̂n < ndown,

and setam,n = 1. UpdateR0.
8: end if
9: end for

10: repeat
11: Compute the value of objective function in (9).
12: Update the cluster center set{v2D

n }.
13: Update the uncommon device setL.
14: for i ∈ L do
15: Find UAV n1 associated to devicei and UAV n2

nearest to devicei. Set{rj} = ∅.
16: if N̂n1 > N̂n2 then
17: Setai,n2 = 1 andai,n1 = 0.
18: else
19: Compute (10) to get{rj}.
20: Compute (11) to getj∗.
21: if rj∗ > 0 then
22: Setai,n2 = 1, aj∗,n1 = 1, ai,n1 = 0 and

aj∗,n2 = 0.
23: end if
24: end if
25: end for
26: until the objective function in (9) converges.
27: return {am,n}, {v2D

n }.

IV. SUB-CHANNEL ASSIGNMENT

After clustering, the association between devices and UAVs
and horizontal locationv2D

n of each UAV are derived. Howev-
er, with{cm,n,k}, {pm} and{hn} uncertain and the complicat-
ed coupling relationship between them, the original problem
(8) is still nonconvex. To address this problem, we design
the sub-channel assignment strategy to get{cm,n,k} in this
section, aiming at minimizing the interference among different
clusters.

In a scenario where multiple UAVs serve a large number
of ground devices, if two close devices are using the same
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Fig. 2. Illustration of Interference Link and Association Link.

sub-channel to transmit their data, the uplink signals to UAVs
will experience strong interference. The dilemma here is that
increasing the transmission power of one device to overcome
the interference will produce stronger interference to the
other devices, and then the other devices will need even
higher transmission power and produce stronger interference
in return. In the worst situation that the interference is so
strong that the transmission power required is beyond the
limit of ground devices, the UAV may fail to demodulate the
received messages. The matching theory is a good solution
for channel allocation [24]. We can model the sub-channel
assignment process as a many-many matching process between
IoT devices and sub-channels [25]. To address this problem,
we design an HD4M algorithm to find a sub-optimal solution.

DefinePk, wherek ∈ K, as a set of the devices that share
sub-channelk. InitializePk = ∅. Sub-channels are assigned to
clusters in sequence, denoted as{πn}, whereπn ∈ N . Since
the interference is severe for adjacent clusters, the first two
clusters, whose centers are nearest, are selected asπ1 andπ2.
The clusterπn, 3 ≤ n ≤ N , is selected which is nearest to the
previous clusters, i.e.,πn = argmin

πn

{

∑n−1
i=1

∥

∥

v
2D
πn

− v
2D
πi

∥

∥

}

.

First, devices in clusterπ1 are initially assigned with sub-
channels in random, which has no influence on the optimality,
and {Pk} is updated. Then, sub-channels are assigned from
clusterπ2 to πN . We denote the cluster in which devices need
to be assigned with the sub-channels as the target cluster.
For each target cluster, the assignment can be modeled as
a bipartite matching problem. This kind of problem can be
solved by using the Hungarian method [36].

Assuming that devicesi andj that communicates to UAVs
n1 and n2 utilize the same sub-channel, we defineri,n2

and rj,n1 as interference distance, while ri,n1 and rj,n2 as
association distance, as shown in Fig. 2. Here a largerri,n1

means devicei is farther from its associated UAVn1, which
requires a higher transmission power of devicei. Meanwhile,
a smallerri,n2 means devicei is closer to its interfered UAV
n2, and thus devicej needs a higher transmission power to
counter the interference. Thus, we define a fitness set{wi,j}
to describe the interference between any two devices, in which

wi,j =

(

r2i,n1
+ r2j,n2

)

(

r2i,n2
+ r2j,n1

) . (12)

We can see from (12) that both smaller association distance
and larger interference distance lead to a smaller value of
wi,j , indicating less interference between devicei andj. The
qualification matrix between sub-channels and devices in each

target cluster are determined as follows,

[Λ]i,k = λi,k =
∑

j∈Pk

wi,j , (13)

whereλi,k indicates the total interference between devicei

and other devices in sub-channelk. When there are no devices
assigned to a sub-channel, i.e. ifPk = ∅, we haveλi,k = 0.

With qualification matrixΛ obtained, after applying the
Hungarian method [36], we get matching matrixS whose
binary elements are denoted assi,k. With si,k = 1, device
i transmits data through sub-channelk, i.e., Pk = Pk ∪ i.
The process continues until devices in all target clusters are
assigned with sub-channels.

We summarize the above process in Algorithm 2. The set
of devices in the target clusterπn is denoted asIn.

Algorithm 2: HD4M Algorithm

Input: {xm}, {am,n}, {v2D
n }.

Output: {cm,n,k}, {Pk}.
1: Initialize {cm,n,k} to zeros.
2: Initialize {Pk} to ∅.
3: Initialize the target clustering preference list{πn}.
4: Initialize the sub-channel assignment in target clusterπ1

and update{Pk}.
5: for n = 2 to N do
6: Obtain the setIn as devices in the target clusterπn.
7: Calculate{λi,k} according to (13).
8: Using the Hungarian method to get matching matrix

S.
9: Setci,πn,k = 1 whensi,k = 1.

10: Update{Pk}.
11: end for
12: return {cm,n,k}, {Pk}.

V. JIONT POWER CONTROL AND ALTITUDE OPTIMIZATION

In this section, we optimize the altitudes of UAVs and the
transmission power of each IoT device. From Sections III and
IV, we have already derived{cm,n,k} and 2D locations of
UAVs {v2D

n }. Now the original problem (8) can be simplified.
According to{cm,n,k}, expression (5) can be transformed

to
Im =

∑

i∈P
k(m) ,

i6=m

pigi,n(m) (hn(m)) , ∀m ∈ M,
(14)

wheren(m) denotes the associated UAV of devicem, andk(m)

denotes the sub-channel assigned to devicem. Meanwhile, we
define

γm ,

N
∑

n=1

K
∑

k=1

cm,n,kγm,n,k, ∀m ∈ M. (15)

Therefore, the SINR constraint takes form ofγm ≥ γ0, ∀m ∈
M. Then substituting (14) into (6), we can transform (15) to

γm =
pmgm,n(m) (hn(m))

∑

i∈P
k(m) ,

i6=m

pigi,n(m) (hn(m)) + σ2
, ∀m ∈ M,

(16)
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and the simplified problem (8) is now expressed as

min
{pm},{hn}

M
∑

m=1

pm (17)

s.t.
pmgm,n(m) (hn(m))

∑

i∈P
k(m) ,

i6=m

pigi,n(m) (hn(m)) + σ2
≥ γ0, ∀m ∈ M,

(17a)

0 ≤ pm ≤ Pmax, ∀m ∈ M, (17b)

hmin ≤ hn ≤ hmax, ∀n ∈ N . (17c)

The average path gain in (17a) is related to the altitudes
of UAVs. Note that the average path gain is a nonconvex
function of hn according to (2)-(4). Therefore, the constraint
(17a) is also nonconvex. Besides, the transmission powers of
IoT devices and UAVs altitudes are not independent, which
makes the problem more complicated. To find the solution of
problem (17), we propose an alternating iterative optimization
method here. We first fix the altitudes of UAVs and optimize
the transmission powers of IoT devices. Then, we begin the
iterative process and in each iteration, we optimize the altitude
of each UAV in turn to minimize total transmission power of
IoT devices.

A. Optimal Transmission Powers of IoT Devices

With fixed altitudes of UAVs, we restate problem (17) as
follows.

min
{pm}

M
∑

m=1

pm (18)

s.t.
pmgm,n(m)

∑

i∈P
k(m) ,

i6=m

pigi,n(m) + σ2
≥ γ0, ∀m ∈ M, (18a)

0 ≤ pm ≤ Pmax, ∀m ∈ M. (18b)

Theorem 1. The optimal solution of problem (18) is obtained
if and only if the following condition is satisfied.

pmgm,n(m)

∑

i∈P
k(m) ,

i6=m

pigi,n(m) + σ2
= γ0, ∀m ∈ M.

(19)

Proof: Assume that the optimal solution of problem (18)
is {p†m}. Then assume that

∃m0 ∈ M, γm0 =
p†m0

gm0,n
(m0)

Im0 + σ2
> γ0. (20)

For the rest(M − 1) devices, we have

γm =
p†mgm,n(m)

Im + σ2
≥ γ0, ∀m ∈ M,m 6= m0. (21)

Let δ > 0 and p∗m0
= p†m0

− δ. According to (20),γm0

decreases asp†m0
decreases. Therefore,∃δ > 0 that makes

γ̂m0 =
p∗m0

gm0,n(m0)

Im0 + σ2
≥ γ0. (22)

With the transmission power of devicem0 decreasing from
p†m0

to p∗m0
, the interference also decreases betweenm0 and

devices sharing sub-channel withm0. To be exact,

I∗m = p∗m0
gi,n(m0) (hn(m0)) +

∑

i∈K
k(m) ,

i6=m0,i6=m

p
†
igi,n(m) (hn(m))

< Im, ∀m ∈ Pk(m0) ,m 6= m0. (23)

Therefore,

γ∗
m =

p†mgm,n(m)

I∗m + σ2
> γ0, ∀m ∈ Pk(m0) ,m 6= m0. (24)

Expression (22) and (24) indicate that constraint (18a) is still
satisfied. Therefore, the real optimal transmission power of
devicem0 must be smaller thanp†m0

, which contradicts to
its optimality assumption. Consequently, assumption (20) does
not hold, which means there must beγm0 = γ0 for the optimal
pm0 .

Then, constraint (18a) can be rewritten as

γ0
∑

i∈P
k(m) ,

i6=m

pigi,n(m) + σ2γ0 − pmgm,n(m) = 0, ∀m ∈ M.

(25)
Now the problem turns into a linear programming problem. It
can be solved by a linear programming tool, e.g. CVX [37].
With Theorem 1, each IoT device has an achievable rate of
log2 (1 + γ0) bps/Hz.

B. Optimization of the UAVs’ Altitudes

Denote the minimal total transmission power of devices
derived at a fixed UAV altitude as{p∗m}, and the problem
(17) can be expressed as

min
{hn}

M
∑

m=1

p∗m (26)

s.t.
p∗mgm,n(m) (hn(m))

∑

i∈P
k(m) ,

i6=m

p∗i gi,n(m) (hn(m)) + σ2
≥ γ0, ∀m ∈ M,

(26a)

hmin ≤ hn ≤ hmax, ∀n ∈ N . (26b)

Due to the existence ofPLoS
m,n , PNLoS

m,n anddm,n in the expres-
sion of gm,n, problem (26) is still nonconvex. To reduce the
dimension of the variables and obtain a sub-optimal solution of
problem (26), we first investigate the optimal altitude of each
UAV one by one in sequence. After deriving the altitudes of
all UAVs, {p∗m} is updated. Then the altitudes are calculated
again and the process is iterated until{p∗m} converges. The
optimization problem for the altitude of UAVn is given by

min
hn

M
∑

m=1

p∗m (27)

s.t.
p∗mgm,n(m) (hn(m))

∑

i∈P
k(m) ,

i6=m

p∗i gi,n(m) (hn(m)) + σ2
≥ γ0, ∀m ∈ M,

(27a)

hmin ≤ hn ≤ hmax. (27b)
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This problem is a one-dimensional optimization problem
which is still nonconvex by now because of the existence of
g in (27a). We use one-dimensional optimization searching
method, e.g. golden-section search, to solve problem (27).

As discussed above, We summarize Algorithm 3 to obtain
a sub-optimal solution of problem (17).

Algorithm 3: Altitude and Power Control Algorithm

Input: Up and down altitude limitshmax andhmin.
Output: {hn}, {pm}.
1: Initialize the altitudes of UAVs as{ĥn}, set the iteration

counterL3 = 0.
2: Solve problem (18) with the CVX to derive{p∗m}.
3: repeat
4: for n = 1 to N do
5: Solve problem (27) by using golden section search

method to gethn, and update{p∗m}.
6: end for
7: Update{hn}.
8: L3 = L3 + 1.
9: until {p∗m} converges.

10: {pm} = {p∗m}.
11: return {hn}, {pm}.

VI. OVERALL SOLUTION

In this section, we provide analyses about the feasibility of
the solution as well as the convergence and complexity of the
algorithms.

A. Solution Reality and Feasibility

For UAV-enabled IoT systems, the fixed positions of IoT
devices (e.g., farm sensors) can be a priori known for the
control center. With the known position information of devices
and using the proposed algorithms, UAVs can be deployed to
the appropriate locations in advance and collect data. Even
though the positions of devices change, we can timely adjust
the UAVs deployment through the proposed low-complexity
algorithms. Therefore, the solution which resolves the device
clustering, sub-channel assignment, power control and UAV
placement, is reasonable and has a real-world significance.

In fact, the uneven device distribution, channel assignment
strategy and/or other strict constraints that seriously affect the
SINR will lead to the severe interference for IoT devices. It
is likely that there is no feasible solution if constraints are
stringent. The proposed algorithms are designed for finding
a feasible solution of the original problem to the greatest
extent. For subproblems of the device clustering and sub-
channel assignment, there always exist feasible solutions by
employing Algorithm 1 and Algorithm 2, respectively. How-
ever, the altitude design and power control subproblem solved
by Algorithm 3 may not always be feasible. In such a case, we
refer to the proposed solution of the original problem being
infeasible. One possible way to handle this issue is to increase
the number of UAV-BSs, such that the requirements of all the
devices are satisfied. The feasibility of the proposed solution
will be evaluated via the simulations in Section VII.

B. Convergence Analysis

In Algorithm 1, both the giving operation and swap oper-
ation are activated only when the value of objective function
decreases. In some rounds of iterations, the association of
devices does not change, and thus the cluster centers will
not change, ensuring the convergence of the algorithm. In
Algorithm 3, the total transmission power of the IoT devices
is always decreasing in the iterative process of optimizing
the altitude of each UAV, which guarantees convergence of
the algorithm. In Section VII, we will show the specific
convergence behaviour of the proposed algorithms.

C. Computational Complexity

In the following, we will discuss the complexity of the
algorithms.

The computational complexity of Algorithm 1 mainly de-
pends on Steps 10-26, with maximum computational complex-
ity is denoted asO (MK), i.e., O

(

M
⌈

M
N

⌉)

. Therefore, the
computational complexity of Algorithm 1 isO

(

M
⌈

M
N

⌉

L1

)

,
whereL1 denotes the number of iterations in Algorithm 1.

The computational complexity of Algorithm 2 mainly de-
pends on Step 7 or the Hungarian matching algorithm. Since
the number of devices sharing a sub-channel is no larg-
er thanN according to (8d), the maximum computational
complexity of Step 7 isO(K2N), i.e., O

(

⌈

M
N

⌉2
N
)

. The
computational complexity of Hungarian algorithm depends on
the dimension of matrixΛ, which is given byO

(

⌈

M
N

⌉3
)

[38]. Hence the computational complexity of Algorithm 2 is
max

{

O
(

⌈

M
N

⌉2
N2
)

,O
(

⌈

M
N

⌉3
N
)}

.
Since the golden-section search and the linear programming

problem in Algorithm 3 have the computational complexities
of O

(

log2
(

hmax−hmin

ǫ

))

andO(M3.5), respectively, the com-
putational complexity of Step 5 isO(M3.5 log2(

hmax−hmin

ǫ
),

where ǫ is the search accuracy [39], [40]. Steps 4-6
have the complexity ofO

(

NM3.5 log2(
hmax−hmin

ǫ
)
)

. There-
fore, the computational complexity of Algorithm 3 is
O
(

NM3.5L3 log2
(

hmax−hmin

ǫ

))

.
Due to N ≤ M , we can easily derive that

max
{

⌈

M
N

⌉2
N2,

⌈

M
N

⌉3
N
}

< NM3.5L3 log2
(

hmax−hmin

ǫ

)

.
Thus, the total computational complexity of the proposed
solution isO

(

M
⌈

M
N

⌉

L1 +NM3.5L3 log2
(

hmax−hmin

ǫ

))

.

VII. S IMULATION RESULTS

In this section, we present the simulation results of the
proposed joint resource allocation and 3D placement scheme
for UAV-enabled IoT communication networks. In the simula-
tions, 120 IoT devices are randomly distributed within an area
of 1km × 1km, and evenly served by 5 UAVs with carrier
frequency of 2 GHz. Here we consider an urban area withρ

of 11.95 andϑ of 0.14 [28]. The other simulation parameters
are listed in Table I.

In Fig. 3, we show the 3D placement of 5 UAVs and
locations of 120 IoT devices. The devices which associate to
different UAVs are indicated by different colors, while the
corresponding UAVs are indicated by the same color. The
uncommon devices are specially indicated by star marks. It
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TABLE I
SIMULATION PARAMETER

Parameters Descriptions Values
Pmax Maximum transmission power of IoT devices 200 mW
σ2 Variance of AWGN -110 dBm
α Path loss exponent 2

ηLoS Additional path loss for LoS in free space 3 dB
ηNLOS Additional path loss for NLoS in free space 23 dB
hmin Minimum altitude of UAVs 200 m
hmax Maximum altitude of UAVs 500 m

Fig. 3. 3D placement of 5 UAVs serving 120 IoT devices.

can be seen that each UAV serves an equal number of devices,
and 5 clusters are separated relatively far from each other,
which can effectively mitigate the interference. There are 5
uncommon devices, which distribute in 4 clusters and are
located at the border areas of the clusters. Here, the uncommon
devices are not associated to their nearest UAVs, because these
UAVs cannot serve any more device due to the limitation
of their task and sub-channels. On the contrary, the common
devices are associated to their nearest UAVs. The horizontal
location of each UAV is set at the center of each cluster. The
altitude of each UAV is optimized based on the distribution of
the devices to further reduce the total transmission power.

The results in the following Figs. 4-9 are the average perfor-
mance over 2000 device distributions and channel realizations
without infeasible solutions. In Figs. 5-9, the performance of
the proposed HD4M algorithm is compared with a benchmark
scheme, in which the sub-channels are randomly assigned to
devices and the altitudes of the UAVs are fixed at 300 m. In
Figs. 7-9, the grid search method is also applied for optimizing
the 3D locations of UAVs instead of the altitudes in Algorithm
3, which is referred to as the 3D grid search. The precision of
the search step is 10 m and the search accuracy is 0.2 in the
simulations.

In Fig. 4, we present the convergence performance of the
proposed algorithms. The values of the objective functions
in Algorithm 1 and Algorithm 3 show no variance after 11
and 5 iterations, respectively. The results demonstrate the fast
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Fig. 4. Convergence performance of Algorithm 1 (up) and Algorithm 3
(down).
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Fig. 5. Total transmission power of devices as the altitude ofUAVs varies,
whereM = 120, N = 5, γ0 = 1 dB, the number of sub-channelsK =

M/N and UAVs’ altitudes are set uniform.

convergence of the proposed algorithms. Specifically, the value
of the target function in Algorithm 1 decreases 13.1% in the
beginning 3 iterations, and then shows little variance. The
value of the target function in Algorithm 3 decreases 18.9%
in the first iteration, and then shows minor variance.

Fig. 5 shows the total transmission power as the altitude
of UAVs changes. Here the altitudes of UAVs for both the
HD4M algorithm and the benchmark scheme are set uniform.
We can see a decrease followed by an increase for the total
transmission power as the altitude increases. Therefore, opti-
mizing the altitude of each UAV can significantly improve the
performance of the system. Specifically, the total transmission
power of IoT devices in the proposed algorithm decreases from
5.33 W to 2.02 W and then grows to 2.7 W. In comparison,
the transmission power of the benchmark scheme decreases
from 5.84 W to 2.73 W and then raises to 5.06 W, with 0.96 W
more than the proposed HD4M algorithm on average. This
phenomenon reveals a similar fundamental trade-off as shown
in [23]. Specifically, by increasing the altitude of UAVs, the
probability of establishing LoS link increases as well, and
thus the total transmission power decreases. However, as the
altitude goes up, the distances between devices and UAVs
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Fig. 6. Reliability comparison between the proposed algorithm and the
benchmark scheme for different SINR thresholds and different altitudes, where
M = 120, N = 5, the number of sub-channelsK = M/N and UAVs’
altitudes are set uniform.

become the main factor that affects the transmission power. In
other words, when UAVs are higher than a certain altitude, IoT
devices would have to spend much more power to compensate
the path loss of signals.

In Fig. 6, we show the probability of obtaining feasible
solution using the proposed algorithms and the benchmark
scheme as the SINR threshold changes. The altitudes of the
UAVs are set uniform. We define reliability as the percentage
of obtaining feasible solutions in 2000 independent simula-
tions. Note that in the given IoT network, all the devices may
not be successfully served due to the contradiction between
the SINR and the interference. A higher SINR requires more
transmission power of a device, while the interference will
also become more serious for other co-channel nodes. In fact,
it is challenging to achieve the high SINR for devices in large-
scale multi-user multi-UAV scenarios, since the sub-channels
are heavily multiplexed. As the SINR threshold increases, the
feasible region of problem (8) becomes smaller, leading to
a decrease of reliability of the proposed solution. From Fig.
6, we can see that at the altitude of 300 m, the reliability
of the proposed solution decreases from 1 to 0.31 as the
SINR threshold increases from -2 dB to 3 dB. However, the
reliability of the benchmark scheme decreases from 0.99 to
0.04. With an SINR threshold of 2 dB, the proposed solution
has a 46% reliability improvement compared with the bench-
mark scheme. The reliability is also related to the altitude of
UAVs. Fig. 6 shows that both the proposed solution and the
benchmark scheme achieve a higher probability of feasible
solution at 300 m than that at 500 m, with any SINR threshold
in the simulations. The results indicate that by optimizing the
altitudes of UAVs, the reliability of the proposed solution can
be further improved.

Fig. 7 shows the total transmission power of all IoT devices
as the SINR threshold varies. As the SINR threshold increases,
each device needs more transmission power to meet the
requirement. By implementing the proposed algorithms, IoT
devices can always transmit their data with a lower power
compared with the benchmark scheme. For instance, consid-
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Fig. 7. Total transmission power for different SINR thresholds, whereM =

120, N = 5, the number of sub-channelsK = M/N and fixed altitude
300 m.
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Fig. 8. Total transmission power for different numbers of UAVs, where
M = 120, γ0 = 1dB, the number of sub-channelsK = M/N and fixed
altitude 300 m.

ering UAVs at 300 m altitude, by increasing SINR threshold
from -2 dB to 3 dB, the total transmission power increases
from 0.89 W to 5.59 W for the benchmark scheme, while it
increases from 0.62 W to 3.47 W with our proposed approach.
We can see an up to 23% performance improvement in Fig.
7 by implementing the HD4M algorithm, and an extra 25%
improvement on average if the altitudes optimization is also
applied. What’s more is that the performance of the proposed
solution for 3D positions of UAVs is very close to that of the
3D grid search method.

Fig. 8 shows the total transmission power of all the IoT
devices as the number of UAVs changes. Clearly, the total
transmission power of IoT devices can be reduced by deploy-
ing more UAVs. Furthermore, using the proposed algorithms,
the total transmission power of the devices decreases by 51%
(on the average) compared to the benchmark scheme. When
there is only a small number of UAVs, such as 2 or 3, the total
transmission power mostly depends on whether the altitudes
optimization is applied. In the case with more UAVs deployed
in the system, the total transmission power decreases, and
the decrease rate of the transmission power becomes smaller.
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Fig. 9. Total transmission power for different numbers of IoTdevices, where
N = 5, γ0 = 1dB, the number of sub-channelsK = M/N and fixed altitude
300 m.

Although optimizing the altitudes still brings good perfor-
mance, this advantage becomes smaller. Correspondingly, our
proposed HD4M algorithm show better performance when the
number of UAVs becomes larger. In fact, with more UAVs
deployed, the total transmission power decreases dramatically.
However, when the number of UAVs is large to a certain
degree, with more devices sharing sub-channels, a stronger
interference also emerges. This leads to a very low decrease
rate of transmission power when the number of UAVs is
larger than 4. It indicates that considering the cost of UAVs,
it is better to deploy 4 UAVs instead of more UAVs with a
very low power consumption gain. In other words, it reveals
a fundamental trade-off between the cost of UAVs and the
transmission power of IoT devices.

Fig. 9 shows the total transmission power as the number of
devices increases. Using our proposed approach, we can see
that the total transmission power increases from 1 to 0.31 as
the SINR threshold increases from 1.17 W to 2.33 W, while it
increases from 1.96 W to 3.85 W for the benchmark scheme.
Clearly, the total transmission power linearly increases with
more devices introduced into the system. The proposed HD4M
algorithm outperforms the benchmark scheme by 21% reduc-
tion of the total transmission power, and 41% reduction of the
total transmission power if the altitude optimization is applied.
It can be seen that our proposed approach is applicable to both
small-scale and large-scale IoT systems. From Fig. 7 to Fig.
9, it is a good way that the horizontal position of each UAV is
fixed in the average position of the devices in the cluster. We
can also see that comparing with the proposed solution, the
exhaustive search of the 3D locations of UAVs only brings
relatively small increments. The results show the rationality
behind the proposed 3D deployment method of UAVs.

VIII. C ONCLUSION

In this paper, we proposed a strategy to optimize the 3D
placement and resource allocation of multiple UAV-mounted
BSs in an uplink IoT network. It is to minimize the total trans-
mission power, where both the interference between different
IoT devices and the limited number of channels of a UAV

are taken into consideration. The strategy can be divided to
three parts. First, to balance the service task of each UAV, we
proposed a clustering method based on K-means algorithm to
divide all devices into several clusters/groups, such that each
group has approximately the same number of devices and is
served by the same UAV. Then, we proposed the HD4M algo-
rithm to determine the sub-channel assignment of the devices
to efficiently mitigate possible interference. Finally, we jointly
optimized the power control of IoT devices and the altitudes
of UAVs by using an alternating optimization method. In each
iteration, we first derive the optimal transmission powers of
the IoT devices, and then optimize the altitudes of UAVs
by using the golden-section search method. The proposed
overall strategy was verified by the simulation results, which
showed that the proposed strategy achieves higher reliability
and effectiveness than the benchmark scheme.
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