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Abstract. Due to the superiority of high mobility, low labor cost and
line of sight (LOS) prominent links of unmanned aerial vehicles (UAVs),
UAV-assisted communications are increasingly attractive in emerging In-
ternet of Things (IoT) networks. In this paper, we study the resource
(including node association, channel and transmit power) allocation for
the multi-UAV assisted IoT network in the uplink, considering the co-
channel interference, limited task and channel capacity for the UAV-BSs.
To provide long-term services for the IoT nodes, the total transmit pow-
er of the IoT nodes is minimized. We decouple the original nonconvex
problem into three subproblems, i.e., node clustering, channel assign-
ment, and transmit power control. To find the suboptimal solutions of
the first two challenging subproblems, a balanced node clustering algo-
rithm and a Hungarian-based Channel Assignment (HCA) algorithm are
proposed, respectively. Then, the transmit power control problem turns
into a convex problem, which can be calculated within polynomial time.
Simulation results are provided to demonstrate the reliability and effec-
tiveness of the overall strategy.

Keywords: Multi-UAV · energy-efficient Internet of Things · uplink ·
resource allocation · matching theory.

1 Introduction

The Internet of Things (IoT) has been widely applied to many fields, such as mili-
tary, intelligent transportation, agricultural production and environmental mon-
itoring [1]. Numerous IoT devices which are always small and battery-limited,
are usually widely distributed in a big area. Moreover, the transmit power of
each device is usually small, such that the devices may not communicate with
the common ground base stations (BSs) which are far away. Unmanned aerial vi-
hicles (UAVs) have significant advantages including high mobility, low labor cost
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and line of sight (LOS) predominant channel [2, 3]. Therefore, deploying UAVs
as aerial BSs is an efficient and cost-effective approach for providing ubiquitous
and long-term services. In the state-of-the-arts, energy-efficient wireless com-
munication has attracted a lot of attention, not only to decrease the operation
cost and be greener but also to prolong the battery life of devices [4]. There-
fore, it is a crucial challenge to design an effective resource allocation strategy
in UAV-assisted IoT networks.

Recently, UAV-assisted IoT communications have been widely investigated
[5–8], where UAVs act as a flexible aerial BSs for data collecting or transferring
data to the ground sensors. Wu et al. [5] aimed at maximizing the throughput
of the ground devices with delay and minimal achievable rate consideration, by
optimizing the resource allocation and trajectory of a single UAV-BS. Using
denoising autoencoder (DAE) neural network strategy, Yu et al. [6] studied a
spatial data sampling scheme for the UAV-assisted large-scale IoT system for
sampling and reconstructing accurate and efficient data. Samir et al. [7] inves-
tigated the single-UAV routing and the radio resource allocation for collecting
data from time-constrained IoT nodes. Considering multi-UAV enabled mobile
IoT architecture, Mozaffari et al. [8] developed an energy-efficient transmission
scheme in order to guarantee the long-term work of the IoT devices, where dy-
namic clustering and optimal transport theory were exploited.

From the above works, we can see that many works (e.g., [5–7]) only consider
a single UAV, which may cannot adapt to latency-sensitive and dense scenar-
ios. Moreover, although some consider multiple UAVs, the abundant spectrum
resource is usually assumed and thus there is no inter-cell interference. Besides,
load balancing is always neglected.

Therefore, in this paper, we model the uplink transmission problem in a
multi-UAV assisted IoT network, considering the balanced task of UAVs, limit-
ed channel resource and co-channel interference. To deal with the original non-
convex problem, we design a three-step resource allocation strategy to find a
suboptimal solution, including node clustering, channel assignment and trans-
mit power control. Compared with the relevant works, the study in this paper
has contributions as follows. First, considering a large-area IoT network with a
huge number of nodes, we investigate a multi-user multi-UAV scenario. Second,
since massive access to a UAV with the limited capacity will cause network con-
gestion, we consider the task balance of UAVs and proposed a balanced node
clustering algorithm leveraging the idea of the K-means method. Besides, since
wireless frequency is a scarce resource and the inter-cell interference is serious,
we design a heuristic dynamic channel assignment algorithm inspired by match-
ing theory, namely, Hungarian-based Channel Assignment (HCA) algorithm, in
order to mitigate the inter-cell interference. Furthermore, simulation results dis-
play the superiority of the overall solution compared with the random allocation
(RA) scheme in terms of convergence, reliability and effectiveness.

The rest of this paper is organized as follows. In Section 2 and Section 3, we
model the system and formulate the problem, respectively. Section 4 propose the
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solutions to the three subproblems. In Section 5, numerical simulation results
are presented and discussed. Finally, Section 6 concludes the paper.

2 System Model

Fig. 1. System model of communications between multi-UAV and IoT nodes in K
channels.

The UAV-assisted IoT uplink system is shown in Fig. 1, where M homoge-
neous and static ground IoT nodes transfer data to N UAVs through . UAVs
hover at the same altitude H. The location information of M nodes is already
known. Without loss of generality, we allow that several nodes can associate to
a same UAV. UAVs utilize the same frequency spectrum to communicate with
ground nodes and there are K ≥

⌈
M
N

⌉
orthogonal channels. The horizontal lo-

cations of nodes m ∈ {1, 2, . . . ,M} and UAVs n ∈ {1, 2, . . . , N} are expressed
as xm = (xm, ym) and vn = (xuav

n , yuavn ), respectively. We assume that a UAV
is able to communicate with

⌊
M
N

⌋
or

⌈
M
N

⌉
nodes, and this balanced scheduling

can avoid channel waste and network congestion. Thus, the association between
UAVs and nodes as well as orthogonal channels should be scheduled. Assume
that a channel can be allocated to a node. In the following, we consider the worst
condition, i.e., K =

⌈
M
N

⌉
and the proposed strategy can be applied in the other

cases.

2.1 Channel Model

According to [9], we consider a probabilistic LOS channel model, i.e., elevation
angle-dependent probabilistic LOS model in an urban environment. The proba-
bility of having the LOS link can be modeled as [9]

PLoS
m,n =

1

1 + a exp [−b (θm,n − a)]
(1)
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where a and b are modeling parameters. θm,n is the elevation angle which is

given by θm,n = 180
π tan−1

(
H

rm,n

)
with the horizontal distance between UAV n

and node m expressed as rm,n =

√
(xm − xuav

n )
2
+ (ym − yuavn )

2
. Thus, non line

of sight (NLOS) probability is PNLoS
m,n = 1− PLoS

m,n .

The channel power of the LOS and NLOS links are formed as [9]

gLoS
m,n =

(
λ

4πdm,n

)α

ηLoS , (2)

gNLoS
m,n =

(
λ

4πdm,n

)α

ηNLoS , (3)

where α is path loss exponent, dm,n is the Euclidean distance between IoT
node m and UAV n, ηLoS and ηNLoS are excessive path loss coefficients, λ is
carrier wavelength. Thus, the expected channel power from node m to UAV n
is expressed as

gm,n = PLoS
m,n gLoS

m,n + PNLoS
m,n gNLoS

m,n

=
[
PLoS
m,n ηLoS + PNLoS

m,n ηNLoS

]( λ

4πdm,n

)α

.
(4)

2.2 Interference Model

Then, we model the co-channel interference. Here a set {am,n,k} is defined to indi-
cate the association among node m, UAV n and channel k ∈ {1, 2, . . . ,K}. When
UAV n associate node m through channel k, am,n,k = 1, otherwise am,n,k = 0.
Let {p1, ..., pM} and σ2 denote the transmit powers of IoT nodes and the vari-
ance of additive white Gaussian noise (AWGN), respectively. Thus, the existing
interference for UAV n and node m through channel k can be expressed as

Im,n,k =

M∑
i=1
i ̸=m

N∑
j=1

ai,j,kpigi,n. (5)

Then, the signal-to-interference-and-noise ratio (SINR) of node m is given by

γm,n,k =
pmgm,n

Im,n,k + σ2
. (6)
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3 Problem Formulation

The total transmit power minimization problem of IoT nodes is formulated as

min
{am,n,k},
{pm},{vn}

M∑
m=1

pm (7)

s.t.

N∑
n=1

K∑
k=1

am,n,kγm,n,k ≥ γ0,∀m (7a)

⌊
M

N

⌋
≤

M∑
m=1

K∑
k=1

am,n,k ≤
⌈
M

N

⌉
,∀n (7b)

N∑
n=1

K∑
k=1

am,n,k = 1,∀m (7c)

M∑
m=1

N∑
n=1

am,n,k ≤ N,∀k (7d)

am,n,k ∈ {0, 1},∀m,n, k (7e)

0 ≤
N∑

n=1

K∑
k=1

am,n,kpm ≤ Pmax,∀m (7f)

where (7a) demands the minimal limitation of the SINR threshold γ0 for each
node, i.e., the SINR constraint. (7b) is the task capability constraint. (7c) re-
quires that each node communicates with a UAV in a channel, i.e., the association
constraint. (7d) indicates that Up to N nodes occupy one channel, i.e., the co-
channel node number constraint. Moreover, (7f) constrains the transmit power
of each node not exceeding Pmax.

4 Proposed Solution

In the original problem (7), {cm,n,k} is a integer set, and thus all the constraints
are integer constraints. In addition, constraint (7a) is nonconvex. Therefore, the
problem (7) is a mixed-integer nonconvex problem.

In the following, we decouple problem (7) into three subproblems and find
an overall sub-optimal solution. Firstly, a balanced node clustering problem is
modeled and an corresponding algorithm is developed inspired by the K-means
method. At the same time, the horizontal locations of UAVs are determined.
Secondly, based on matching theory, channels are assigned to nodes with the pro-
posed HCA algorithm. Lastly, the transmit power optimization problem transfers
into a convex problem and can be solved within polynomial time.

4.1 Node Clustering

Due to homogeneous nodes and distance-based channel power, the K-means
method is an efficient strategy in user clustering [8, 10]. However, in practical
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scenario, uneven distribution of nodes with the K-means method may lead to
massive access or few access from nodes to a UAV. Correspondingly, there will
be the stringent co-channel interference or the idle channel in a cell. Therefore,
we propose the balanced clustering algorithm to ensure the full utilization of
spectrum resources as well as mitigate the inter-cell interference, and meanwhile,
each UAV balances the load.

Without loss of generality, we assume that in the horizontal direction, UAVs
are deployed at centers of clusters [10]. Thus, n can denote both “UAV” and
“cluster center”. Then, we define the association between node m and UAV n as

cm,n =

K∑
k=1

am,n,k, (8)

where we have cm,n ∈ {0, 1} according to the model. Thus, the balanced node
clustering subproblem can be fomulated as

min
{cm,n},{vn}

M∑
m=1

N∑
n=1

cm,nr
2
m,n (9)

s.t.

⌊
M

N

⌋
≤

M∑
m=1

cm,n ≤
⌈
M

N

⌉
,∀n (9a)

N∑
n=1

cm,n = 1,∀m (9b)

cm,n ∈ {0, 1},∀m,n (9c)

with r2m,n = ∥xm − vn∥2. In [11], the clustering problem was proven NP-hard.
In the following, an three-step algorithm inspired by the K-means method is
proposed for the sub-optimal solution of problem (9).

1) Center Initialization: First, we initialize centers of clusters by K-means++
to separate centers far from each other.

2) Association Initialization: Second, we allocate the M nodes association
in sequence to the closest UAV. We define R = mod (M,N). According to
constraint (9a),

⌈
M
N

⌉
and

⌊
M
N

⌋
nodes are served by R and (N − R) UAVs,

respectively. We define the node that is assigned to its closest UAV as good
node. If a node is going to be assigned to its closest UAV whereas there
have been

⌈
M
N

⌉
nodes served by this UAV, the node will turn to connect the

second closest UAV and we call the node bad node. In the end, several nodes
may be assigned to UAVs which are not the closest UAVs. Furthermore, the
execution sequence of nodes affect the association result. Therefore, next we
further update clusters to adjust the association from good and bad nodes
to UAVs.

3) Cluster update: An iterative process is developed to adjust clusters. In
each process, we first recalculate each cluster center, which is given by

vn =

∑M
m=1 cm,nxm∑M

m=1 cm,n

, (10)
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Algorithm 1: Balanced Node Clustering Algorithm

Input: N , M , {xm}.
Output: {vn}, {cm,n}.

1 Initialize Rclu = 0 as the real number of clusters which own
⌈
M
N

⌉
nodes.

Initialize N̂n = 0 and {cm,n} = 0. Initialize L = ∅ as the bad node set. Initialize
R. Compute {rm,n};

2 Utilizing K-means++ to initialize cluster center locations {vn};
3 for m = 1 to M do
4 if Rclu < R then

5 Get the closest UAV n∗ = argmin
n

{rm,n} , n ∈ {n | N̂n <
⌈
M
N

⌉
} and set

cm,n∗ = 1. Update Rclu;

6 else

7 Get the closest UAV n∗ = argmin
n

{rm,n} , n ∈ {n | N̂n <
⌊
M
N

⌋
} and set

cm,n∗ = 1. Update Rclu;

8 while objective function in problem (9) decreases do
9 Update {vn} and L;

10 for i ∈ L do
11 Get UAV n1 = arg

n
{ci,n = 1} and UAV n2 = argmin

n
{ri,n}. Set

{rj} = ∅;

12 if N̂n1 ≤ N̂n2 then
13 Compute (11) to get {rj};
14 Compute (12) to get j∗;
15 if rj∗ > 0 then
16 Set ci,n1 = 0, ci,n2 = 1, cj∗,n1 = 1 and cj∗,n2 = 0;

17 else
18 Set ci,n2 = 1 and ci,n1 = 0;

19 return {vn}, {cm,n}.

and the bad nodes is updated. After that, two operations are designed, name-
ly, exchange operation and supply operation for uncommon nodes in order
to improve the clustering performance. Assume that for an bad node i, n1

and n2 denote the associated UAV and closest UAV, respectively. Assume
node j associates to UAV n2 The number of nodes associated to UAV n is
denoted as N̂n. In the exchange operation, if N̂1 ≤ N̂2, objective function
value in (9) may minish with the exchange for association between UAVs n1,
n2 and nodes i, j. Furthermore, a fitness set {rj} with j ∈ {m|am,n2 = 1} is
defined as

rj =
(
r2i,n1

+ r2j,n2

)
−
(
r2i,n2

+ r2j,n1

)
, (11)

which show the decrease of the objective function. Then, the optimal ex-
change node j∗ with a maximal reduction is got, which is computed as

j∗ = argmax
j

{rj} . (12)
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Note that only when rj∗ > 0, the association for nodes i and j∗ are ex-

changed. In the supply operation, if N̂1 > N̂2, node i will be assigned to
UAV n2. The iterative process is stopped when the objective function in (9)
does not decrease.

The above process is summarized in Algorithm 1. Center Initialization is
conducted in Step 2. Association Initialization is conducted in Steps 3-7.
Cluster update is conducted in Steps 8-18. The exchange and supply opera-
tions are conducted in Steps 13-16 and Step 18, respectively. In Cluster update
stage, only if the objective function value decreases, both of the two operations
are executed, which guarantee the convergence. The Cluster update stage de-
termines the algorithm complexity, which is given by O

(
M

⌈
M
N

⌉
L1

)
, where L1

is the number of iterations.

4.2 Channel Assignment

With the fixed association scheduling {cm,n} between UAVs and nodes as well
as the horizontal location {vn}, the original problem (7) is still nonconvex with
uncertain channel scheduling and power control. Thus, in order to minimizing
the co-channel interference and get {cm,n,k}, a channel assignment strategy is
designed in the following.

In practical multi-user multi-UAV networks, the co-channel interference is a
tricky issue. Specifically, each node can increase the transmit power to improve
its SINR, while the SINRs of other co-channel nodes in different cells will de-
crease. Therefore, a reasonable channel assignment strategy plays a vital part in
improving the network performance. Matching theory has been proved to be an
effective method for the future wireless communications, especially in channel
allocation [12]. Inspired by matching theory, the channel assignment problem
in the multi-user multi-UAV network can be modeled as a many-many match-
ing process between channels and nodes. In the following, we design an HCA
algorithm to address the channel assignment problem.

Define Pk as a node set in which the nodes utilize the same channel k and
initialize Pk = ∅. We assign channels to N clusters (denoted as {πn} in which
πn ∈ {1, 2, . . . , N}) in sequence. Because of stringent interference between neigh-
bouring clusters, we select the first two clusters as π1 and π2, whose centers are
cloest. According to the nearest distance to the previous clusters, the next cluster
πn, 3 ≤ n ≤ N , is selected by

πn = argmin
πn

{
n−1∑
i=1

∥vπn − vπi∥

}
. (13)

First, we assign nodes in cluster π1 initially with channels in random, which does
not affect the optimality, and {Pk} is updated. Then, we assign channels from
cluster π2 to πN . The objective cluster is denoted as the cluster where the nodes
are required to be allocated channels. Thus, we can model the assignment prob-
lem for each objective cluster as a bipartite matching problem, and a heuristic
design for the qualification matrix below.
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Fig. 2. Interference and association links between two co-channel nodes.

As shown in Fig. 2, assume that the same channel is utilized by nodes i
and j which communicates with UAVs n1 and n2. ri,n2 and rj,n1 are difined as
interference distance, as well as ri,n1 and rj,n2 are defined as association distance.
Apparently, a higher transmit power of device i is required in case of a larger
ri,n1 to make up for a larger channel loss and/or a smaller ri,n1 to counter the
more serious interference. Thus, to describe the co-channel interference between
any two nodes, we define the fitness set {wi,j}, in which

wi,j =

(
r2i,n1

+ r2j,n2

)(
r2i,n2

+ r2j,n1

) . (14)

A small value of wi,j can be obtained by both large interference distance and
small association distance, indicating small co-channel interference between n-
odes i and j. Thus, in each objective cluster, we can get the qualification set of
channels and nodes, i.e.,

λi,k =
∑
j∈Pk

wi,j , (15)

where λi,k actually indicates the total suffered interference of node i from the
other co-channel nodes. We can have λi,k = 0 for no co-channel nodes, i.e.,
Pk = ∅. Thus, the matching problem between the nodes of present objective
cluster and channels can be given by

min
S

∑
j∈{m|cm,n=1}

K∑
k=1

sj,kλj,k (16)

s.t.

K∑
k=1

sj,k = 1,∀j ∈ {m|cm,n = 1} (16a)∑
j∈{m|cm,n=1}

sj,k = 1,∀k (16b)

sj,k ∈ {0, 1},∀k,∀j ∈ {m|cm,n = 1} (16c)
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Algorithm 2: HCA Algorithm

Input: {xm}, {cm,n}, {vn}.
Output: {am,n,k}, {Pk}.

1 Initialize {am,n,k} = 0, {Pk} = ∅, the objective clustering list {πn} and random
channel allocation in objective cluster π1. Update {Pk};

2 for n = 2 to N do
3 Get set In whose element is the node in the objective cluster πn;
4 Compute {λi,k} with (15);
5 Solve matching problem (16) with hungarian method to get S;
6 Update {Pk};
7 for i ∈ In do
8 Find k∗ ∈ {k|si,k = 1} and set ai,πn,k∗ = 1;

9 return {Pk}, {am,n,k}.

Where S is the binary matching matrix and sj,k is the element. The optimal
solution can be resolved using hungarian method [13]. si,k = 1 denotes that
node i utilizes channel k, and we can have Pk = Pk ∪ i. When the nodes in each
objective cluster are allocated channels, the process terminates. Finally, we can
get the scheduling among UAVs, nodes and channels, i.e., am,n,k = cm,nsm,k.

In Algorithm 2, we summarize the above process. The hungarian method or
fitness set computation in Step 4 determine the algorithm complexity, which is

given byO
(⌈

M
N

⌉2
N
)
andO

(⌈
M
N

⌉3)
[14], respectively. Therefore, the algorithm

complexity is max
{
O
(⌈

M
N

⌉3
N
)
,O

(⌈
M
N

⌉2
N2

)}
.

4.3 Transmit Power Control

After the node clustering and channel assignment with the horizontal locations
{vn} of UAVs, relation set {am,n,k} as well as co-channel information set {Pk},
original problem (7) can be transferred into a transmit power control problem.
The simplified problem is given by

min
{pm}

M∑
m=1

pm (17)

s.t.
pmgm,n(m)∑

i∈P
k(m) ,

i ̸=m

pigi,n(m) + σ2
≥ γ0, ∀m (17a)

0 ≤ pm ≤ Pmax,∀m (17b)

where k(m) indicates the allocated channel of node m, and n(m) denotes the
associated UAV of node m.

Problem (17) is a linear programming (LP) problem. Through interior point
method, problem (17) can be addressed within polynomial time [15].
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5 Performance Simulations

In this section, the simulation results are provided to verify the performance
of the proposed strategy for multi-UAV assisted IoT communications. In the
simulations, we consider an urban area of 1km × 1km with 120 randomly dis-
tributed IoT nodes and 5 UAVs, and a and b are 11.95 and 0.14 [16], respectively.
The carrier frequency is 2GHz, UAVs hover at 300m, variance of AWGN is -
110 dBm, maximal transmit power of IoT nodes is 300mW, α = 2, ηLoS = 3dB,
ηNLOS = 23dB, respectively. Our proposed strategy is simulated by MATLAB
R2018b.

The results in the following Fig. 3(b) and Figs. 4-5 are the average results of
2000 independent running. In Figs. 4-5, a random assignment (RA) strategy, in
which channels are randomly assigned to nodes, acts as a benchmark scheme.

In Fig. 3, with Algorithm 1, we show the balanced node clustering result
and convergence of Algorithm 1. Specifically, in Fig. 3(a), 120 IoT nodes are
evenly divided into 5 clusters (identified by different colors) and the horizontal
locations of the UAVs are fixed at the centers of clusters. What’s more, there
are 2 bad nodes (indicated by star marks) which are on the boundary of two
groups and not communicate with their closest UAVs because of the task and
channel constraints. The good nodes are scheduled to their closest UAVs. In Fig.
3(b),the objective function value in subproblem (9) does not decrease after 11
iterations, which show the fast convergence of Algorithm 1.
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(a) Balanced node clustering using Algo-
rithm 1 with 120 IoT nodes and 5 UAVs.
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(b) Convergence performance of Algorithm
1.

Fig. 3. Association assignment and convergence in balanced node clustering.

In Fig. 4, with changing SINR threshold, we show the performance compari-
son between HCA algorithm and RA strategy, in terms of the system reliability
and the transmit power. Reliability denotes the percentage of obtaining feasi-
ble solutions. Compared with the RA scheme, we can see that using the HCA
algorithm, the reliability is better and the total transmit power is smaller from
Fig. 4. As the SINR threshold increases, the reliability becomes worse and more
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transmit power is needed. With γ0 = 2dB, the HCA algorithm has at most 46%
improvement of reliability over the RA strategy. In Fig. 4(b), the total transmit
power increases by HCA algorithm or RA strategy. In fact, a higher SINR for
a node needs more transmit power, but it will produce stronger interference to
the co-channel nodes. Therefore, in multi-user multi-cell networks, it is difficult
to obtain a very high SINR for nodes with co-channel interference. In Fig. 4(b),
there are 23% transmit power reduction at most using HCA algorithm, which
verifies the performance.
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(a) Reliability comparison for different S-
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nodes, UAVs and channels is 120, 5 and 24,
respectively.

Fig. 4. Property with different SINR thresholds.

Fig. 5(a) and Fig. 5(b) show the total transmit power of the IoT nodes as the
UAV number and the node number change, respectively. From Fig. 5(a), using
HCA algorithm, the total transmit power of nodes is reduced by an average of
15% under different number of UAVs and nodes compared with the RA strategy.
Furthermore, we can see that the percentage of the performance improvement by
using the HCA algorithm will increases with more UAVs, which means that the
HCA algorithm will obtain the better performance than the RA strategy with
more UAVs. What’s more, when the number of UAVs increases, there will be
less performance gain using either the RA stragety or HCA algorithm. It reveals
that if we take into account the operation and maintenance cost of UAVs, we
should not deploy many UAVs to just reduce the total transmit power of nodes
but reasonably deploy the proper number of UAVs in practice. From Fig. 5(b),
with the increase of nodes, the total transmit power increases linearly. The total
transmit power of nodes is reduced by an average of 15% under different number
of nodes compared with the RA strategy. We can see that the proposed scheme
works well in IoT networks of all sizes.
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Fig. 5. Total transmit power with different number of UAVs and nodes.

6 Conclusion

In this article, a resource allocation strategy for multi-UAV assisted IoT uplink
communication was developed. In particular, we considered the co-channel inter-
ference, limited channel resource and balanced task of UAVs. First, the balanced
node clustering algorithm was designed. Then, we proposed HCA algorithm to
assign channels. Finally, we used CVX to resolve the convex problem of the
transmit power control. The proposed solution was verified via the simulation-
s, which showed good convergence and obtained better performance than RA
strategy.
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