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Abstract In this paper, we describe the statistical characteristics of weak signal detection by a chaotic Duffing

oscillator, and present a new method for signal detection and estimation using the largest Lyapunov exponent.

Previous research has shown that weak signals can be detected by a chaotic system. Many researchers use

the Lyapunov exponent to flag the detection of a chaotic state, but our research shows that the Lyapunov

exponent follows statistical characteristics, and therefore more factors should be considered in flagging chaotic

weak signals. Here, we analyze the statistical characteristics inherent in the Lyapunov exponent calculation

steps, and build up a statistical model for different chaotic states based on simulation data. Furthermore, we

provide expressions for false-alarm and detection probabilities, selection of driving force threshold and detection

of signal-noise-ratio. Finally, we summarize the method of signal amplitude estimation. Our research indicates

that the performance of the detection system is related to sampling times and intervals, in accord with the

theory of statistical signal detection.
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1 Introduction

Recently, weak signal detection using chaotic oscillators has been widely studied in the field of signal
processing. In 1992, Birx made pioneering experiments on signal detection in noisy environments [1]. In
1995, Haykin used artificial neural network methods to extract weak signals from chaotic noise background
[2]. In 1996, Leung used minimum phase space volume (MPSV) methods to estimate the autoregressive
(AR) model inside chaotic noise [3]. As early as 1997, Short and Kennedy showed how to extract signals
from chaotic communications [4, 5]. In 1999, Wang used a chaotic oscillator to detect sinusoidal signals
from white noise with −66 dB SNR [6]. Later, he investigated the method of estimating signal phase and
amplitude based on a chaotic oscillator [7]. In 2001, Wang extracted the original signal from background
noise by this method [8]. From 2003 to 2008, Li performed a series of experiments [9–11] on frequency and
amplitude signal detection, lowering the SNR to −111 dB. In 2009, Liu analyzed the detection method
of weak periodic signals by using a chaotic oscillator [12]. Our research shows that the previous paper
had not considered that the chaotic decision flag could be subjected to noise interference, and also had
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not studied the probability of missing and false detections. The conclusion is that the SNR cannot be
used to measure the system performance.

Because the chaotic oscillator is impervious to white noise but sensitive to signals, any weak signal
will pull the system out from its chaotic state. If this weak signal affects the phase portrait, it can be
detected. There are two ways to check that a system is in a chaotic state or not: one is by visual analysis
and the other analytic. Visual analysis is rather subjective and is difficult to extend to an engineering
arena. Analytical methods use special characteristic values to judge whether states are chaotic. These
characteristic values identifying chaotic behavior include fractal dimensions [13], Kolmogorov entropy
[14] and Lyapunov exponents [15]; the first two are hard to calculate, but are related to the Lyapunov
exponent. Most researchers focus on the largest Lyapunov exponent as a quantitative check in weak signal
detection [16–18]. Although signal detection is a stochastic problem, no one has analyzed the stochastic
behavior of Lyapunov exponents. Despite the fact that the Lyapunov exponent has been found to have
a failure probability [16, 19], no further research in this area has been pursued.

Our study uses statistical theory of signal detection to analyze the statistical characteristics of the
Lyapunov exponent in weak signal detection. We first develop the statistical model of these exponents,
and reveal their relationship to false alarms and detection probabilities. Our research shows for the first
time that chaos signal detection and statistical detection can exploit similar models, and proves that
the Lyapunov exponent is not a deterministic flag of weak signal detection. Additionally, our study also
extends the method to signal amplitude estimation. The statistical signal model could be also used in
chaotic estimations, bringing a novel way to treat weak signal estimations by means of a chaotic oscillator.

2 Weak signal detection based on the Duffing chaotic oscillator

2.1 Duffing oscillator and phase portrait

The Duffing oscillator was introduced into nonlinear dynamics by Duffing in 1918. However, the modified
Duffing-Holmes equation is the preferred and widely used form in weak signal detection [16, 20]. This is
expressed as follows

x′′ + kx′ − ax3 + bx5 = F cos(ωt), (1)

The dynamic equation is shown in (2):
{

x′ = y,

y′ = −ky + ax3 − bx5 + F cos(ωt),
(2)

where k is damping factor, a and b are two real numbers, and F is periodic driving force. The physical
meaning of (2) is that it describes a non-linear vibrational equation with polynomial resilience. With
different F , the system falls into one of five different states, classified as either homoclinic, bifurcation,
chaotic, critical, or large-scale periodic. Weak signal detection uses the chaotic, critical and large-scale
period states, phase portraits of which are shown in Figure 1.

According to Wang [21], changes in the chaotic state are immune to noise. This is mainly because
of the following three reasons. The first is that the non-linear gain of the system enables weak signals
to be different from background noise. The second is the presence of noise suppression in the periodic
state. The third is related to the sampling integrator. According to the statistical characteristic of the
right-most point R in the phase portrait, Wang concluded that the SNR of point R can be defined by

SNR0 =
√

mxa

σ
=

√
mxa√

0.48hσ0

, (3)

and the input SNR of amplitude by

SNR1 =
A

σ0
. (4)

Therefore, the SNR of the energy improvement by the non-linear gain is
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Figure 1 Phase portraits of the chaotic system. (a) Chaotic states; (b) critical states; (c) large-scale periodic states.

SNIR = 20 log
(

xa

A

√
m

0.48h

)
, (5)

where A is the amplitude of input signal, xa the x-coordination of the right-most point R, m the sampling
integrator count, h the sample interval, σ0 the standard deviation of input noise, and σ the standard
deviation of point R. According to Wang’s result, when the amplitude of the input signal is 0.01, the
sample interval is 0.001, with xa equal to 1.71. Even when there is one sampling integrator, the SNR
improvement could be 77.8 dB. However, the detection of weak signals is based on a state change, not on
a point value in a phase portrait. Thus, the improvement of the SNR is important for noise suppression,
but is not significant for signal detection.

2.2 Lyapunov exponent

As previously mentioned, the visual analysis of a phase portrait state change is not feasible in an engi-
neering context. The basic characteristic of chaotic motion is its sensitivity to initial conditions. Two
orbits generated from two close initial values will part from each other exponentially. The Lyapunov
exponent provides a quantitative description of this behavior [15]. Consider two (usually nearest) neigh-
boring points in phase space at initial time 0 and at later time t, with the distances of the points in the
i-th direction being ‖δxi(0)‖ and ‖δxi(t)‖, respectively. The Lyapunov exponent is then defined as the
average growth rate λi of the initial distance

‖δxi(t)‖
‖δxi(0)‖ = eλit(t → ∞), (6)

or equivalently

λi = lim
t→∞

1
t

ln
‖δxi(t)‖
‖δxi(0)‖ . (7)

For the chaos detection phase portrait depicted in Figure 1, there are two Lyapunov exponents, the sum
of the two exponents being −k. The chaotic state of the system can be tested by the largest Lyapunov
exponent [22]. If the largest Lyapunov exponent is positive, all differences in the orbit will change
chaotically whatever the initial distances are. In contradistinction, if the largest Lyapunov exponent is
negative, differences in the orbit will disappeared. The system’s state will remain in a large-scale periodic
orbit, indicating that there exists a weak signal. Because the Lyapunov exponent has good quantitative
characteristics, it is also useful in the selection of driving force threshold Fr.

Calculations of Lyapunov exponents in continuous systems are mainly performed by one of several
means including the definition method, Jacobian matrix method, Wolf method [23], and small data set
method [24]. If the system’s dynamic equation is known, the definition method and Jacobian matrix
method are commonly used; otherwise, the Wolf method and small data set method are used. In our case
this equation is known, and hence to calculate Lyapunov exponents we have elected to use the Jacobian
matrix method. The detailed steps are as follows:

For a continuous system, x′ = D(x), where x′ = dx

dt
. The x value in the phase portrait is frustrated

by input noise nσ. The continuous tangent space has a point x(t) at which a tangent vector e can be
described by following formula:
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e′ = J(x(t))e, (8)

where J = ∂D
∂x . Here, J is the Jacobian matrix of function D(x). Let e(0) → e(t) be a continuous linear

operator in the mapping variable U . The function can be written as

e(t) = U(t, e(0)). (9)

The evolution of U can be described by the exponent from Jacobian matrix, that is,

λ(x(0), e(0)) = lim
t→∞

1
t

ln
‖e(t)‖
‖e(0)‖ . (10)

The average value of the evolution can be represented by

λ = lim
t→∞

1
kΔt

k∑
j=1

ln
‖e((j + 1)Δt)‖

‖e(jΔt)‖ . (11)

(11) is fundamental to the Jacobian matrix method in calculating the Lyapunov exponent in a continuous
system. Here, we have defined the sample interval h = Δt, and sampling time n = kΔt.

2.3 Traditional weak signal detection by chaotic oscillator

In his paper, Wang gave originally the three main steps involved in weak signal detection using a chaotic
oscillator [6]. The first step is to fix the dumping factor k in (1), and increase the driving force F

step by step, until the chaotic phase portrait state changes into a critical state. The critical state is an
intermediate state between a chaotic state and a large-scale periodic state; if F is increased further, the
state will exhibit large-scale periodicity. Typical phase portraits of these three states are shown in Figure
1. Testing of a critical state is determined by its Lyapunov exponent. The second step is to mark the
driving force threshold Fr = F , and record the Duffing equation with the threshold value. The third
step involves generating the input signal S(t) with a periodical signal frequency equal or close to the
driving force frequency ω. The signal will be detected even if the background noise is very high. The
new equations are shown in (12):

x′′ + kx′ − ax3 + bx5 = Fr cos(ωt) + S(t),

S(t) = A cos(ωt) + nσ(t),
(12)

where A is the amplitude of the periodic input signal, nσ ∼ N(0, σ2
0), and σ0 the standard deviation of

the noise signal. If there exists a periodic input signal, even if A � σ0, the phase portrait will change
from one characterizing chaotic behavior to one for large-scale periodic motion. According to Li et al.
[11], the detection SNR of a sinusoidal input signal can be −110 dB, which means

10 log
A2

σ2
0

= −110 dB.

3 Statistical characteristics of the Lyapunov exponent

The key problem in previous research is that the noise interference on the chaotic test was not taken into
consideration. The direct use of the Lyapunov exponent as a criterion will lead to a higher missing prob-
ability. In this section, we will analyze the factors affecting the calculation of the Lyapunov exponent by
theoretical methods, and focus on the relationship between the driving force and the Lyapunov exponent
under the three different states. Finally, a model developed to investigate the relations between input
noise and Lyapunov exponent will be established in a simulation.
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3.1 Non-linear gain of chaotic system

As we discussed above, the non-linear gain of a chaotic system cannot be used as a criterion in weak
signal detection. Instead, the Lyapunov exponent is commonly used in testing for a change in a chaotic
state. Although the Lyapunov exponent is proved to be a good quantitative criterion with high gain, it
is still affected by frustration in a phase orbit caused by signal noise. Thus, the calculated Lyapunov
exponent will no longer be a definitive test. When considering the right-most point R in a phase portrait,
x′ = 0, x′′ ≈ 0. The input noise σ0 will be added to Fr after multiplying by the factor

√
0.48h, that

will also cause the state to change. Consequently, studying the statistical characteristics of Fr and the
Lyapunov exponent will reveal the relationship between the input signal and Lyapunov exponent. From
the discussions above, the difference between the standard deviations of coordination x (represented by
σx) and input noise (represented by σ0) is the multiplicative factor

√
0.48h. Thus, a reduction in the

sampling interval h will be helpful in decreasing the standard deviation of the phase portrait.

3.2 Theoretical analysis of the Lyapunov exponent in statistical characteristics

For critical and large-scale period states, the factors affecting the evaluation of Lyapunov exponents
include: sampling interval h, sampling time n, inputted noise σ0, driving force threshold Fr and input
signal A. This interference can be treated as yet another noise caused by the input signal noise.

With regard to sampling interval h, it has been proved that the variance of the phase portrait is directly
rated to h [21]. Eq. (12) describes a system with an inputted noisy signal with variation σ2

0 . According
to Wang et al. [21], the phase portrait noise σ2

x is proportion to the input noise. In this paper, we use r1

as the ratio of two noises, as expressed in (13):

σ2
x = r1(t) × h × σ2

0 . (13)

Focusing now on the sampling time n, the standard deviation of Lyapunov exponent will decrease with
increasing n. Although the noise distribution of limt→∞ 1

t ln ‖e(t)‖
‖e(0)‖ cannot be calculated, the Lyapunov

exponent is according to (11) the sum of n random variables. Applying the central limit theory, if each
variable is only slightly affected and none is critical, the sum of the variables follows a normal distribution
[25]. Because each variable ln ‖e((j+1)Δt)‖

‖e(jΔt)‖ only contributes slightly to the sum, the Lyapunov exponent
will follow a normal distribution, and the standard deviation will decrease with increasing n. Denoting
the variance of Lyapunov exponent by σ2

λ, we express the variance in the form

σ2
λ =

r2 × σ2
x

n
. (14)

When the system is in a chaotic state, the dynamics as expressed by (12), is impervious to any input
signal. Thus, the input signal does not affect the variance of the phase portrait σ2

x which can be considered
as a normal distribution value irrespective of the input signal. In this paper, we use r3 to denote the
constant of proportionality between σ2

x and n2
0:

σ2
x = r3 × n2

0. (15)

Figure 2 displays phase portraits obtained from simulations with inputted noise. Compared with Figure
1, these phase portraits clearly exhibit more frustration.

According to the above analysis, noise σ0 can be treated as a small perturbation f to the driving force
F , which ultimately modifies the Lyapunov exponent condition. Because f is an equivalent estimation,
it cannot be deduced by theory. Instead, the relationship between the driving force and the input noise
will be analyzed by statistical means.

When a weak input signal is present, (12) simplifies to (16):

x′′ + kx′ − ax3 + bx5 = Fr cos(ωt) + A cos(ωt) + σ0randn(t)

= (Fr + A) cos(ωt) + σ0randn(t).
(16)
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Figure 2 Phase portraits of a chaotic system affected by noise. (a) Chaotic states; (b) critical states; (c) large-scale

periodic states.
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Figure 3 Relationship between largest Lyapunov exponent of a Duffing oscillator and driving force.

Table 1 Value of driving force threshold in different parameters

h n Fr

0.01

100

0.719854757750137

0.001 0.71859405144014

0.0001 0.71848972929516

0.01
1000 0.719854757750121

10000 0.719854757750121

With the effect of a weak signal finally added to the driving force Fr, the chaotic system changes state
and the Lyapunov exponent becomes negative.

3.3 Statistical model of the Lyapunov exponent

3.3.1 Relationship between Lyapunov exponent and driving force

When there is no input signal, the relationship between the driving force F and largest Lyapunov exponent
is shown in Figure 3. The transition position of the Lyapunov exponent is the critical state. The left and
right sides correspond to chaotic and large-scale periodic states, respectively.

Simulations show that the value of Fr is related by the vibration equation to parameters n and h.
Based on (12), the value of Fr given different parameter values are shown in Table 1.

When h=0.01 and n=100, two values F1 and F2 are selected either side of the driving force values,
F1=0.71985475775012 and F2=0.71985475775014. As Figure 3 shows, when F < F1, the system is in a
chaotic state; when F � F2, the system is in large-scale periodic state; when F1 � F < F2, the system
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is in critical state. For each of these different states, the contribution of noise to the Lyapunov exponent
can be represented by nc, np and nl, so that we can express the Lyapunov exponent in these states by
following three formulas:

⎧⎪⎪⎨
⎪⎪⎩

λ1 = λc + nc

λ2 = λp + np

λ3 = λl + nl

F < F1,

F1 � F < F2,

F � F2.

(17)

Here, λ1, λ2 and λ3 represent the Lyapunov exponent value for the chaotic, critical and large-scale
states, respectively.

3.3.2 Statistical characteristics of the Lyapunov exponent for a chaotic state

In the chaotic state, the largest Lyapunov exponent follows a normal distribution for which the math-
ematical expectation is non-zero. The mean value of λc is constant, independent Fr and σ0. This is
because the vibration equation is impervious to the inputted noise that stabilizes the variance of the
Lyapunov exponent. Actually, the stability of the variance is because this variance in the chaotic state
is much higher than that incurred by the input noise, making the system seemingly impervious to noise.
The system transitions from the chaotic state to either a homoclinic state or a large-scale period state as
the input noise increases.

When we put (14) and (15) into (17), the relationship between input noise and Lyapunov exponent
could be represented by formula:

λ1 = λc + nc = λc +
Rc√

n
n0, (18)

where λc is the average value of the Lyapunov exponent in the chaotic state, nc its frustration, n0 the
Gaussian white noise follows N(0, 1), Rc the chaotic ratio to input noise, and n the sampling time. The
statistical results are shown in Table 2. When k = 0.5 and σ2

0 = 10−6, the parameters in (18) are:
λc = 0.1815 and Rc = 0.137. Because λc is 10 times the standard deviation, the Lyapunov exponent will
not become negative in this situation.

The Lyapunov exponent distribution for a chaotic state is shown in Figure 4.

3.3.3 Statistical characteristics of the Lyapunov exponent for a large-scale periodic state

The largest Lyapunov exponent for a large-scale periodic state follows a normal distribution for which
the mathematical expectation is non-zero. The average value is λl. In contradistinction to chaotic states,
λl is not constant and is linear in Fr. The variance is proportional to the sampling time n and inversely
proportional to the input noise. This signifies that the Lyapunov exponent for a large-scale periodic state
is sensitive to noise.

When we put (13) and (14) into (17), the Lyapunov exponent for such states with perturbing input
noise can be represented by (19).

λ3 = λl + nl = λl +
Rl

√
h√

n
nσ, (19)

where λl is the average value of the Lyapunov exponent for the large-scale periodic state, nl its frustration,
and Rl its ratio to input noise. Moreover, λl is a variable that depends on the driving force threshold Fr.
Statistical results show that when k=0.5, h=0.01 and n=100, the parameters in (19) are: λl = −0.1005,
and Rl = 19.1. Because λl is 10 times the standard deviation, the Lyapunov exponent will not become
positive in this situation.

The relationship between λl and Fr can be acquired by linear fitting. The formula is:

λl = −alFr + bl, (20)
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Table 2 Statistic results of the Lyapunov exponent for a chaotic state

Fr h n Mean value Standard deviation

0.7193 0.01

100

0.1815 0.0140

0.7185 0.001 0.1803 0.0138

0.7180 0.0001 0.1838 0.0135

0.7193 0.01
1000 0.1835 0.0040

10000 0.1839 0.0013
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Figure 4 Lyapunov exponent distribution for a chaotic state.

Table 3 Statistic results of the Lyapunov exponent for a large-scale periodic state

Fr h n σ0 Mean value Standard deviation

0.7203 0.01

100 10−6

−0.1005 1.91e−4

0.7195 0.001 −0.0989 1.07e−4

0.7190 0.0001 −0.0963 5.22e−5

0.7203 0.01
1000

10−6 −0.1014 5.59e−5

10000 −0.1015 1.80e−5

0.7203 0.01 100
10−7 −0.1005 6.67e−5

10−8 −0.1005 2.04e−5

where al and bl are fitting parameters. According to the statistical results for the driving forces from
0.7199 to 0.7205, these parameters were found to be al = 12.2809 and bl = 8.7454.

Putting (20) into (19) yields the Lyapunov exponent formula for a large-scale periodic state.

λ3 = −alF + bl +
Rl

√
h√

n
σ0. (21)

If the perturbing input noise is of the same order as the frustration to driving force, the relationship
between these is:

σF =
Rl

√
h

al
√

n
σ0. (22)

According to the statistical results from Table 3, σF = 0.0156σ0, which signifies that the noise level
has been reduced about 18 dB.

The Lyapunov exponent distribution for a large-scale periodic state is shown in Figure 5.
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3.3.4 Statistical characteristics of the Lyapunov exponent for a critical state

At the critical point, the Lyapunov exponent will reverse sign from positive to negative. Thus, the
Lyapunov exponent and Fr can be linearly fitted by a nearly vertical line. When the driving force
changes from 0.71985475775012 to 0.71985475775014, the Lyapunov exponent decreased from positive to
negative, as detailed in Figure 6.

When we put (13) and (14) into (17), the Lyapunov exponent for a critical state with perturbing input
noise can be represented by (23).

λ2 = λp + np = λp +
Rp

√
h√

n
nσ, (23)

where λp is the average value of the Lyapunov exponent for a critical state, np its frustration, and Rp

its critical ratio to input noise. Similarly, λp is a variable depending on the driving force threshold Fr

accompanied by a large rate of change. Statistical results show that when k=0.5, Fr = 0.719854757750125,
h=0.01 and n=100, the values of the parameters in (23) are: λp = −0.007019 and Rp = 1.019× 1013. By
linear fitting, the Lyapunov exponent can be represented by:

λp = −apF + bp, (24)

where ap and bp are fitting parameters. According to the statistical results from Table 4, their values
are found to be ap = 5.256 × 1012 and bp = 3.786 × 1012. In a manner similar to the above, we find the
relationship between input noise and frustration to be

σF =
Rp

√
h

ap
√

n
σ0. (25)



Jin T, et al. Sci China Inf Sci November 2011 Vol. 54 No. 11 2333

Table 4 Statistical results of the Lyapunov exponent for a critical state

Fr h n σ0 Mean value Standard deviation

0.719854757750125 0.01

100

10−28
0.007019 1.019e−3

1000 0.006817 3.364e−4

10000 0.006927 1.613e−4

0.719854757750125 0.01 100
10−29 0.006964 3.352e−4

10−30 0.006979 1.568e−4

Based on this equation and parameter values, σF = 0.0194σ0. The value is similar to that for the
large-scale periodic state, signifying that the perturbing input noise is fixed in these states.

3.4 Statistical characteristics of the Lyapunov exponent

Based on (17), the statistical characteristics of the Lyapunov exponent can be summarized by the following
equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ1 = λc +
Rc√

n
n0, F < F1,

λ2 = −apF + bp +
Rp

√
h√

n
σ0, F1 � F < F2,

λ3 = −alF + bl +
Rl

√
h√

n
σ0, F � F2,

(26)

where ap = 5.256 × 1012, bp = 3.786 × 1012, al = 12.2809, bl = 8.7454, Rc = 0.137, Rl = 19.1 and
Rp = 1.019 × 1013.

4 Signal detection and estimation based on chaotic oscillator

4.1 Weak signal detection based on the chaotic oscillator

4.1.1 Neyman-Pearson principle

The Neyman-Pearson principle [26] is commonly used in signal detection theory. Our study also uses
this principle to analyze the chaotic signal detection system associated with the Duffing oscillator. For a
common signal detection problem, there are two hypotheses:

{
Hs0 : x(t) = nσ(t),

Hs1 : x(t) = A cos(ωt) + nσ(t),
(27)

where nσ(t) ∼ N(0, σ0). The first hypothesis indicates an absence of a weak signal while the second
includes such a signal. According to (16), if n time tests have been performed for Hs, the k-th test result
is equivalent to the following hypotheses:

{
HF0 : F [k] = Fr + nF [k],

HF1 : F [k] = Fr + A + nF [k],
(28)

where nF (t) ∼ N(0, σF ). Because F [k] cannot be measured directly, the criterion can be performed
by the mapping between F and the Lyapunov exponent. The two hypotheses based on the Lyapunov
exponent are:

{
Hl0 : λ[k] � 0,

Hl1 : λ[k] < 0.
(29)

(29) is equivalent to following hypotheses:



2334 Jin T, et al. Sci China Inf Sci November 2011 Vol. 54 No. 11

2500

1500

1000

2000

500

0

Pr
ob

ab
ili

ty
 d

en
si

ty

−0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
Largest Lyapunov exponent

No signal
Weak signal
Strong signal

n=100
n=1000
n=10000

×10−5

10−4 10−3 10−2 10−1

6

5

4

3

2

1

0

Probability of false alarm

F
2-
F

r

Figure 7 Lyapunov exponent distributions in weak sig-

nal detection.

Figure 8 Relationship between false alarm probability

and driving force.

{
Hl0 : F [k] � F2,

Hl1 : F [k] > F2.
(30)

The probability distributions of the Lyapunov exponent under different kinds of inputted signals are
shown in Figure 7.

4.1.2 False alarm probability

P (Hl1; Hs0) is used to denote the probability that the value of the Lyapunov exponent is larger than zero
in the absence of an input signal. Because nf follows a normal distribution, the false alarm probability
is then represented by

Pfa = P (Hl1; Hs0) = P (F [k] > F2; Hs0)

=
∫ +∞

F2

1√
2πσ2

F

exp
[
− 1

2σ2
F

(k − Fr)2
]

dk

=
1
2
erfc

(
F2 − Fr√

2σF

)

=
1
2
erfc

(
al
√

n

Rl

√
h

F2 − Fr√
2σ0

)
. (31)

For a specified Duffing equation, parameters Rl, al and F2 are stable. The false alarm probability can
be reduced by three methods: increasing the sampling time n, decreasing the sampling interval h, and
decreasing the driving force threshold Fr. The relationship between Fr and Pfa can be represented by

Fr = F2 −
√

2σ0
Rl

√
h

al
√

n
erfc−1(2Pfa). (32)

When h=0.01 and input noise σ2
0 = 10−6, the relationship between the false alarm probability and the

driving force for different sampling times n is displayed in Figure 8.
If the probability of false alarms is 1%, then F2 − Fr = 3.618× 10−5 yielding Fr should be 0.7198186.

4.1.3 Detection probability

P (Hl1; Hs1) is used to represent the probability that the Lyapunov exponent is negative in the absence
of an input signal. Again, as nf follows a normal distribution, the detect probability of the system is
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Pd = P (Hl1; Hs1) = P (F [k] > F2; Hs1)

=
∫ +∞

F2

1√
2πσ2

F

exp
[
− 1

2σ2
F

(k − Fr − A)2
]

dk

=
1
2
erfc

(
F2 − Fr − A√

2σF

)

=
1
2
erfc

(
al
√

n

Rl

√
h

F2 − Fr − A√
2σ0

)
. (33)

Similarly, the detect probability can be increased by increasing sampling time n, decreasing sample
interval h, or increase driving force threshold Fr. The relationship between Fr and Pd can be represented
by

A = F2 − Fr −
√

2σ0
Rl

√
h

al
√

n
erfc−1(2Pd). (34)

When h=0.01 and input noise σ2
0 = 10−6, the relationship between the detection probability and input

signal A for different sampling times n is shown in Figure 9.
If the detection probability is set at 99%, the signal amplitude is A = 7.2362 × 10−5, which yields

detection of SNR= 20 log10(
A
σ0

) = −22.8 dB.

4.1.4 Detection signal to noise ratio (SNR)

Putting (34) into (32), we obtain the signal to noise ratio given false alarm probability Pfa and detection
probability Pd:

A = F2 − Fr −
√

2σ0
Rl

√
h

al
√

n
erfc−1(2Pd)

=
√

2σ0
Rl

√
h

al
√

n
(erfc−1(2Pfa) − erfc−1(2Pd)),

A

σ0
=

√
2
Rl

√
h

al
√

n
(erfc−1(2Pfa) − erfc−1(2Pd)).

(35)

(35) shows the detection SNR will continuously increase with increasing sampling rate and sampling time.

4.2 Signal estimation based on chaotic oscillator

Similarly for signal detection, the signal amplitude can be estimated based on the Lyapunov exponent. If
the input signal is too low, the Duffing oscillator will remain in a chaotic state. The Lyapunov exponent
does not reflect the input signal strength. Thus, the signal estimation works mainly for large-scale periodic
states. According to (21), the amplitude of the input signal can be measured by the following expressions:

λ3 = −al(Fr + A) + bl +
Rl

√
h√

n
nσ, (36)

A = −λ3 − bl

al
− Fr +

Rl

√
h

al
√

n
nσ. (37)

The accuracy of the estimation can be expressed as follows:

E(Â) = −λ3 − bl

al
− Fr, (38)

var(Â) =
R2

l h

a2
l n

n2
σ. (39)
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and detection probability.

Figure 10 Signal amplitude estimation based on the

Lyapunov exponent.

To increase the accuracy of the signal amplitude estimation, either increasing the sampling time or
decreasing the sampling interval is still feasible. Specifying the input noise σ2

0 = 10−6, the estimation
dependence is shown in Figure 10.

5 Conclusions

Previous studies have used the Lyapunov exponent as a criterion in chaotic weak signal detection systems.
However, noise affecting chaotic state evaluations was not considered in those papers and this has lead
to inaccuracies in signal detection and high false alarm probabilities. To mitigate these problems, we
studied the statistical characteristics of weak signal detection based on the chaotic Duffing oscillator,
clarified the factors affecting the Lyapunov exponent calculation, and built up a model that treats the
connection between Lyapunov exponents and input noise. The parameters in the model were calculated
by simulation of a modified Duffing-Holmes equation. Furthermore, the calculation methods to obtain
false alarm probabilities, detection probabilities and detection SNRs are demonstrated using this model,
and extended into weak signal amplitude estimation. This paper contributes in extending the statistical
signal detection and estimation theory into the area of chaotic signal detection. It also points out the
inconsistency in directly using Lyapunov exponents as a criterion for chaotic weak signal detection in noisy
backgrounds, and shows how to exploit probability and statistical methods to describe the performance
of chaotic weak signal detection systems.
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