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ABSTRACT 

 

SAR based on compressed sensing (CS) greatly reduces the 

amount of data. The pseudo-random space-time modulation 

technology could alleviate the constraint on the type of the 

observed scene. This paper provides a survey on the effects 

of noise, sparsity, and phase on the modulation technology 

performance. Selection of a suitable algorithm is necessary 

to achieve this goal. 1l norm−  algorithm performs the best of 

the three algorithms, including greedy algorithm, and 

Bayesian algorithm. The experiment results show that the 

performance of the pseudo-random space-time modulation 

SAR is improved. With the increase of the noise and the 

decrease of the sparsity, the performance improvement with 

modulation is more and more limited. With the decrease of 

phase density, the performance obtained by modulation 

decreases continuously. When the amplitude variation range 

exceeds  0, , the improvements are similar. 

 

Index Terms— pseudo-random modulation, 

reconstruction algorithm, noise, sparsity, phase 

 

1. INTRODUCTION 

 

High-resolution and wide-swath request SAR system based 

on the Nyquist sampling theorem to acquire and process 

more and more data. A certain degree of redundancy exists 

in the echo, which means radar data is compressible [1]. CS 

can greatly reduce the amount of data. If the measurement 

matrix satisfies condition of restricted isometry property 

(RIP), original sparse signal can be recovered from a small 

set of linear nonadaptive measurements, much smaller in 

size than required by the Nyquist sampling theorem [2].  

An alternative approach based on CS for radar imaging 

is proposed. This approach regards azimuth focusing by 

taking only a fraction of the temporal signal sequence [3]. 

However, the CS-SAR proposed above is limited in the type 

of the observed scene and can only reconstruct the sparse 

scene. In order to alleviate this limitation, a pseudo-random 

space-time modulation SAR has been proposed. This 

technology is phase modulation which generates random 

phase along azimuth dimension [4].  

To explore the applicability of this technique, we study 

the effects of noise, sparsity, phase density and amplitude on 

pseudo-random space-time modulation SAR technology. 

Airborne SAR and spaceborne SAR have different SNR for 

different scenes. It is of great significance to find out the 

sparsity of observation scene which this technique is more 

suitable for in practice. The existing antenna technology can 

not completely meet the requirements of the modulation 

technology. This survey provides a reference for designing a 

SAR system to observe different scenes.In order to reduce 

the recovery error, the performance of different categories 

reconstruction algorithm is also compared.  

This paper is organized as follows. Section 2 describes 

the echo model in detail. Section 3 presents the comparison 

of three CS reconstruction algorithms. Simulations results 

and analysis of the effects of noise, sparsity and phase on 

modulation performance are represented in section 4. 

 

2. ECHO SIGNAL MODEL 

 

The principle of synthetic aperture is that the coherent 

information recorded at the different positions is used to 

synthesize a larger antenna to obtain higher azimuth 

resolution. The antennas in traditional SAR systems mainly 

include parabolic antenna and phased-array antenna. The 

Lincoln Laboratory in the Massachusetts Institute of 

Technology (MIT) proposed compressive reflector antenna 

(CRA) which can generate spatially and temporally variable 

random phase [6]. Pseudo-random space-time modulation 

can be achieved by the CRA. In the pseudo-random space-

time modulation, the phase is random. “Space” means that 

different imaging areas have different random phases, and 

“time” means that different sampling moments have 

different random phases.  

After range compression and RCMC, the echo signal 

model can be expressed as 
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where ( )i   represents the phase generated by the antenna 

corresponding to the point target ( , )i ix y . The phase is linear 

in the traditional antenna, while the phase is random in CRA. 
( , )n   represents the additive noise in the data. 

For a range bin cell corresponding to the range 

sampling moment 0 , Eq.(1) can be expressed as  
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The RIP property is a sufficient and necessary condition 

for accurate reconstruction of the original signal in CS. 

However, it is difficult to prove whether the matrix satisfies 

the RIP condition, so this property is not used extensively in 

practical applications. In general, the performance of the 

reconstruction matrix is evaluated through mutual coherence 

coefficient, which reflects the maximum similarity between 

any two different columns. It can be expressed as 

 
2 2

,
max

i j

i i
i j

D D
u

D D
=   (3) 

where iD  and jD  denote the ith  and jth  column of the 

matrix D  respectively. The matrix with large mutual 

coherence coefficient is not good for the reconstruction of 

the original signal. 

 

Table.1 Simulation parameters 

Parameters Value 

Orbit Hight(km) 600 

Velocity (m/s) 7100 

Resolution(m) 2.658 

Wavelength(m) 0.03 

Squint Angle (°) 0 
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Fig.1 Illustration of mutual coherence coefficients 

 

In traditional SAR, the azimuth observation matrix is 

determined by the Doppler movement between the radar and 

the observed scene. After pseudo-random space-time 

modulation, the mutual coherence coefficient decreases and 

the randomness increases, which is more conducive to 

signal recovery. The simulation shown in Fig. 1 also verifies 

this, and the corresponding simulation parameters are given 

in Table.1. 

 

3. COMPRESSED SENSING ALGORITHM  

 

3.1 Compressed sensing reconstruction algorithm 

 

The reconstruction equation without subscript is written as: 

 p D n= +   (4) 

The most fundamental method to reconstruct the 

azimuth signal is to solve the following 0l norm− equation: 
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Many sparse recovery algorithms have been proposed to 

solve this problem. The algorithms are mainly divided into 

three categories: convex relaxation algorithm, greedy 

algorithm, and Bayesian algorithm. 

The first category, convex relaxation algorithm, solves 

the sparse signal recovery problem by transforming non-

convex problem into convex optimization problem. 

Example of this technique includes Basis Pursuit De-

Noising (BPDN). 0l norm− and 1l norm−  are equivalent 

under certain conditions. Eq.(5) can be rewritten as  

 
1 2

min . .s t D p


  −    (6) 

Eq.(6) can also be written as 
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where   is the regularization parameter, which is often an 

experience value.  
The second category, greedy algorithm, recovers the 

sparse signal through an iterative process. Example of this 

technique includes Orthogonal Matching Pursuit (OMP).  

The third category, Bayesian Compressive Sensing 

(BCS), solves the sparse recovery problem by taking into 

account a prior knowledge of the sparse signal distribution.  

 

3.2 Experimental results 

 

In this work, we consider a one-dimensional scene of length 

N=1501 that contain K point targets randomly chosen with 

random backscatter amplitude and phase. K is variable, 

which determines the sparsity varies from 1% to 50%. 

Table.1 shows the simulation parameters. The modulation 

phases uniformly distributed in [0,2 ] . The additional noise 

obeys a Gaussian distribution. The sampling rate was 

reduced to 1/4. Three sparse recovery algorithms are 

simulated under the conditions of 0 noise and 10dB SNR. 
In order to compare the performance of sparse recovery 

algorithms, we use recovery error to evaluate the error 

between the original sparse signal and the recovered one. 

We used the following equation to calculate this error: 

 0 2

0 2

Err
 



−
=   (8) 

where   denotes the recovered signal,   denotes the 

original signal. 
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Fig.2 Illustration of recovery error 

 

Fig.2 shows the recovery error when sparsity is between 

0% and 50% for 1l norm− , OMP, and BCS algorithms. The 

recovery error of 1l norm−  algorithm is the smallest, 

followed by BCS algorithm. In the process of increasing the 

sparsity, OMP algorithm has the situation that the error 

increases suddenly. In the case of 10dB noise, the 

performance of 1l norm−  algorithm is still optimal, while the 

performance of OMP algorithm becomes very poor. 
 

      
(a) Original image                  (b) 1l norm−  algorithm result 

      
(c) BCS algorithm result               (d) OMP algorithm result 

Fig.3 Illustration of recovery result 

 

Table.2 Evaluate parameters 

 
1l norm−  

algorithm 

BCS 
algorithm 

OMP 
algorithm 

Recovery error 0.0916 0.1125 0.2090 

SSIM 0.5231 0.3071 0.0839 

 

Echo simulation and reconstruction based on real SAR 

image without noise has also been done. The simulation 

parameters are the same as the last experiment. The human 

visual system mainly obtains the structural information from 

the image, so the image restoration quality can be evaluated 

through structural similarity (SSIM). It can be expressed as: 
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where x  and y  are the original image and the image to be 

evaluated, x  and x  represent the mean value and standard 

deviation, xy  denotes the covariance between x  and y , C  

are constants to avoid having a 0 in the denominator. Fig.3 

and evaluate indicators in Table.2 verify that the 1l norm−  

algorithm is optimal, and BCS algorithm comes next. OMP 

algorithm and above two still has gap. 

 

4. PERFORMANCE ANALYSIS OF PSEUDO-

RANDOM SPACE-TIME MODULATION 

 

The following experiments adopt the parameters in Table.1, 

condition in section 3.2, and 1l norm−  algorithm except for 

the phase settings. 

 

4.1 Performance comparison of experiments with and 

without modulation 

 

In this work, we compare the performance of the 

observation matrix without modulation and with uniformly 

distributed random phase modulation in [0,2 ] . The 

simulations are carried out under the condition of no noise, 

30dB, 20dB and 10dB SNR, respectively. 
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Fig.4 Illustration of recovery error  

 

Fig.4 shows that the performance of the pseudo-random 

space-time modulation SAR is improved compared with 

traditional SAR in the presence of noise. When the sparsity 

is less than 20% and high SNR, the performance increases 

significantly. With the increase of the noise, the 

performance improvement with random phase modulation is 

more and more limited. 

 

4.2 Performance comparison with different azimuth 

density of phase 
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Ideally, the antenna should generate enough random phases 

in the azimuth direction to satisfy the observation 

requirements. Due to antenna technology, the number of 

random phases is limited. In this work, the random phase is 

generated at different densities along the azimuth direction, 

the remaining phases are obtained by adjacent phase 

interpolation. 2/5/10 were selected as the point target 

interval with phase for simulation.  
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(a)No noise                              (b)SNR:20dB 
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Fig.5 Illustration of recovery error 

 

Fig.5 illustrates that with the decrease of phase density, 

the performance improvement obtained by modulation 

decreases continuously. When the sparsity is less than about 

20%, there is little difference among the four. Noise also 

affects the performance of modulation. The smaller the 

noise, the more obvious the difference.  

 

4.3 Performance comparison with different phase 

amplitude 
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Fig.6 Illustration of recovery error 

 

The amplitude of the modulation phase also affects 

performance. Fig.6 shows that the effect of modulation 

phase with amplitude variation in  0, ,  0 3 2， ,and 

 0,2 is similar. The modulation performance of the phase 

varying in  0 1 4， is inferior to that of the other three 

situations. When the SNR decreases to 10dB, the difference 

between the four will be very subtle. 

 

5. CONCLUSION 

 

In this paper, we do a survey on the effects of noise, sparsity, 

phase density and phase amplitude on the pseudo-random 

space-time modulation technology performance. 

1l norm− algorithm is the optimal algorithm in terms of 

recovery error. The matrix mutual coherence coefficients 

and the recovery error have proved the improvement of the 

modulation. When the SNR deteriorates to 10dB, the 

performance improvement due to modulation begin to be 

limited. With the decrease of phase density, the performance 

decreases continuously. The effect of modulation phase with 

amplitude variation range less than  0,  is similar. These 

experiments are very practical for designing a pseudo-

random space-time modulation SAR system to observe 

different scenes. 
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