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A B S T R A C T

Convolutional neural networks (CNN) are mainly used for image recognition tasks. However, some huge
models are infeasible for mobile devices because of limited computing and memory resources. In this paper,
feature maps of DenseNet and CondenseNet are visualized. It could be observed that there are some fea-
ture channels in locked state and some have similar distribution property, which could be compressed
further. Thus, in this work, a novel architecture — RSNet is introduced to improve the computing efficiency
of CNNs. This paper proposes Relative-Squeezing (RS) bottleneck design, where the output is the weighted
percentage of input channels. Besides, RSNet also contains multiple compression layers and learned group
convolutions (LGCs). By eliminating superfluous feature maps, relative squeezing and compression layers
only transmit the most significant features to the next layer. Less parameters are employed and much com-
putation is saved. The proposed model is evaluated on three benchmark datasets: CIFAR-10, CIFAR-100 and
ImageNet. Experiment results show that RSNet performs better with less parameters and FLOPs, compared
to the state-of-the-art baseline, including CondenseNet, MobileNet and ShuffleNet.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Image classification is one of the most basic tasks of the image
recognition. After AlexNet [1] won the ImageNet Challenge: ILSVRC
2012 [2] in 2012, the convolutional neural networks (CNN) started
dominating computer vision field. Since then, researchers focused
on exploring complex CNN model to obtain a higher performance
[3-7]. In recent years, improvement on computing hardware makes
the deep and complex model design possible. Accuracy was sub-
stantially improved, but it came at the cost of extensive parameters,
training time, computing and memory resources [3, 8, 9]. Besides,
deep models also bring the problem of gradient vanishing. As a result,
some researches aim to design more computing efficient and lighter
CNN models without deteriorating existing accuracy standards. This
leads to the development of efficient CNNs with different techniques:
removing redundant connections [10-14], using quantized weights
[15-17] and improving network architectures [3, 8, 10, 11, 18-27].
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Similarity Networks (SimNets) [28] use the similarity operator
and global MEX pooling method to improve the capability of small-
size networks. SqueezeNet [26] reduces the channels of 3 × 3 filters
and partially substitutes them with 1 × 1 filters in order to sim-
plify the networks without impeding network capability too much.
MobileNet [24] uses depth-wise separable convolutions to build
light weight networks, which work well on embedded devices. In
the pursuit of compressed CNN models, engineering methods like
weight quantization and encoding were also utilized like Binary-
Weight-Networks [16] and XNOR-Net [29] represents weight and
even feature maps with binary values, which are quite efficient in
terms of memory and computation. Network Pruning is another
technique used for model compression [13, 30, 31]. Moreover, global
average pooling [32] was also proposed to cut down the number of
fully-connected layers to design simple models.

Besides, bottleneck module design is focused by lots of
researchers, and there are plenty of achievements reached.

NIN (Network in Network) [32] uses 1 × 1 convolutional layer for
the first time to combine different feature maps. Inspired from NIN,
GoogleNet [9] proposed inception module that contains bottleneck
structure in the form of 1 × 1 convolutions. Inception module uses
1 × 1 convolutional layer to reduce feature outputs followed by 3 × 3
or 5 × 5 convolutional layers, which maintain the local perception
capacity of model with lower computational cost.
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ResNet [3] training details gradient vanishing and reduce
parameters greatly by using shortcut connections. Residual block
[conv1 × 1-conv3 × 3-conv1 × 1] also implements bottleneck by
using 1 × 1 convolution layer. However, because of the fusion oper-
ation at the end of the residual block, ResNet also involves additional
parameters to expand the feature map dimension.

DenseNet [8] introduces direct connections from all layers before
the subsequent layer. Within one dense block, by concatenat-
ing of previous feature maps, DenseNet could reduce computa-
tion by reusing them. It relatively improves computational effi-
ciency and substantially reduces parameters. DenseNet employs
1 × 1 convolution as bottleneck layer in DenseBlock-B structure
[BN+ReLU+conv1 × 1+BN+ReLU+conv3 × 3]. Though, it achieves
obvious improvements but still requires plenty of FLOPs to meet
desired accuracy levels.

CondenseNet [25] explicitly removes redundant features by using
the idea of learned group convolutions (LGCs), which significantly
improves computational efficiency. Group convolutions is proposed
in AlexNet [1] to solve the problem of limited GPU memory. Now,
group convolutions are widely used in small models to reduce com-
putational cost. Multiple group convolutions have one side effect
when stacked together: outputs of a certain channel group are
derived from a small fraction of input channels. This behavior lim-
its blocks information flow between channel groups and weakens
representations. To mitigate this effect, ShuffleNet [27] investigates
the effectiveness of shuffle layer that was used for a two-stage con-
volution [33]. CondenseNet takes a step forward and proposes LGCs
to elude adaption to certain group of features, besides using per-
mutation layer. CondenseNet basic block replaces 1 × 1 standard
convolutions (G=1) with LGCs. Then the following 3 × 3 standard
convolution is replaced by 3 × 3 group convolutions.

However, similar to DenseNet, the bottleneck layer in Con-
denseNet also has the fixed output channels both in shallow layer
and deep layer. In this paper, our work shows that it generates
superfluous feature maps both in initial layers and in deep layers.
Introduction of increasing growth rate (IGR) somehow curbed these
growth trends, but problems remained within the single dense block.
Our basic block follows the structure of DenseNet and CondenseNet.
The bottleneck later structures of ResNet, DenseNet and RSNet are
shown in Fig. 1. Because DenseNet and CondenseNet share the same
bottleneck layer design, so the bottleneck layer of CondenseNet is
not presented here.

Based on the above observation, it could be found that reusing
feature maps could reduce model parameters, and LGCs could reduce
parameters and FLOPs also. However, the fixed bottleneck layer
could be designed more flexible, by changing the output channels of
each bottleneck layer. Thus, we propose RSNet to solve the problem
of how to use feature maps more efficiently.

Fig. 1. Bottleneck design comparison of ResNet and DenseNet with relative squeezing
bottleneck design of RSNet.

The main contributions of our work is summarized as follows:

1. A Relative Squeezing bottleneck module is proposed to
improve the computing efficiency. By adopting an in-out cor-
relation rule, the bottleneck layer will be set different output
channels for each dense layer, even in the same dense block.

2. Multiple compression layers as well as LGCs layers are
improved to reduce the redundant parameters.

3. Feature maps of DenseNet and CondenseNet are visualized to
observe the feature maps state. Results show that there are
some feature maps in lock state both in shallow and deep
layers. Also, some feature maps share the similar patter after
dimension reduction by T-sne. Besides, channel-wise similar-
ity measurement of feature maps experiments show that the
feature maps of RSNet is more expressive. These are moti-
vations of the proposed RSNet, which will be presented in
Section 4.

The organization of the rest of the paper is as follows; in Section 2,
the proposed Relative Squeezing bottleneck layer is presented and
the compression layer as well as transition layer are described. The
performances of RSNet in CIFAR and ImageNet datasets are presented
in Section 3. Further experimental results about feature maps of the
model are analyzed in Section 4. Besides, this section also gives the
insights of our motivation of proposing RSNet. Section 5 concludes
the work.

2. Methods

RSNet is based upon four major principles to achieve a light,
accurate and computing efficient CNN model:

1. Efficient bottleneck design combined with simple basic block
that should transfer maximum information while generating
moderate feature outputs.

2. Incorporating multiple compression layers, which limit the
number of feature maps fed to next blocks and restrict transfer
of features from initial layers to deeper layers. This results in
reduction of computations, transfer of most useful features and
increase in depth of model (which eventually helps to increase
the classification accuracy) while generating relatively less
parameters.

3. Shortcut connections from previous layers to exploit feature
reuse so as to generate minimum feature outputs at each layer.
This helps to achieve best bottleneck design besides reducing
processing cost and number of parameters.

4. Implementing LGCs technique from CondenseNet, which intel-
ligently learns most useful feature maps, eradicates superflu-
ous features and groups relevant feature inputs.

2.1. Model architecture

RSNet is based upon RS blocks, multiple compression and transi-
tion layers. Fig. 2 shows the model architecture.

Initially, image is processed by 3 × 3 standard convolutional layer
(G=1) to produce 48 output feature maps, which are forwarded to
RS block. Architecture for CIFAR-10/100 datasets is composed of six
RS blocks, three compression layers, two transition layers and lin-
ear classifier at the end. RS block contains multiple basic RS units,
where output feature maps from all previous RS units are stacked
together by using shortcut connections. Basic RS unit contains one
1 × 1 LGC layer and one 3 × 3 group convolutional layer. Each
convolutional layer (except 1st layer) is organized as the form of BN-
ReLU-Conv. RS units generate feature maps in bottleneck fashion,
which is intelligibly designed by using a novel approach of Rela-
tive Squeezing C it is percentage squeezing of input channels. First
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Fig. 2. RSNet architecture design for CIFAR datasets containing 32 × 32 sized images.

1 × 1 convolution uses LGCs technique [25] to intelligently select
more expressive and relevant feature maps. Features generated by
point-wise LGCs are forwarding to 3 × 3 group convolutional layer.
Compression layers (comprising 1 × 1 group convolutional layer) and
transition layers (comprising 1 × 1 group convolutional layer and
average pooling layer) are alternately used between two RS blocks.
Compression layer produces more powerful features and reduces
the number of features transmitted to next RS block; meanwhile, it
drops less informative features. Transition layer, in addition to com-
pression layer function, downsamples the input feature maps; this
alleviates computational efficiency by downsizing feature maps for
next blocks.

2.1.1. Notations of the model
Here, the hyperparameters we used in our model are introduced

as the following:

• S: squeezing ratios. S1 and S3 are squeezing ratios of 1 × 1
convolutions and 3 × 3 convolutions respectively.

• C: compression ratio, which should be between 0 and 1.
• G: convolution groups.
• B: number of basic blocks in each RS block.
• y: block output channels before concatenation operation.
• Y: block output channels after concatenation operation.
• Dg: divisible function.

Trade-off between parameters and FLOPs can be achieved by
gradually increasing or decreasing the number of basic blocks B for
RS blocks while keeping other hyper-parameters constant. Increas-
ing Basic block pattern (2 − 4 − 6 − 8 − 10 − 12, means layers number
B in each basic block) for RS blocks, results in significant increase in
parameters as compared to FLOPs and vice-versa.

2.2. Relative squeezing bottleneck design

We observe that the bottleneck design of DenseNet is based
upon fixed number of outputs in a dense block despite different
input channels of each dense layer. This fixed bottleneck design out-
puts superfluous channels at initial layers. Besides, in deep layers,
it restricts feature propagation. We improve bottleneck design by
proposing idea of Relative Squeezing: output channels of bottleneck
layer are weighted squeezing of input channels. It generates outputs
as percentage squeezing of input channels. This eliminates super-
fluous feature maps from initial layers, transfers the most useful
features and propagates features to next layer as each percentage
of input channels. Keeping the same accuracy, it effectively reduces
the number of FLOPS and model parameters. Let y and Y denote
basic block output channels before and after concatenation respec-
tively. We introduce bottleneck design parameter S that is termed
as squeezing ratio. Where S1 and S3 are squeezing ratios of 1 × 1
convolutions and 3 × 3 convolutions respectively:

yi = Dg(Dg(Yi−1 ∗ S1) ∗ S3) (1)

Yi = Yi−1 + yi (2)

Number of output channels at layer l can be calculated as under:

Yl =
l∑

i=1

(Yi−1 + Dg(Dg(Yi−1 ∗ S1) ∗ S3)) (3)
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Here, Dg represents divisible function to ensure that output fea-
tures are divisible by number of groups G and value of S ranges
between 0 and 1.

Bottleneck design comparison of ResNet, DenseNet and RSNet
is given in Fig. 1. Input channels are kept 512 for comparison.
ResNet bottleneck (Left) employs squeeze-expand design; last 1 × 1
convolutional layer generates too many features to satisfy the sum-
mation function requirement that drastically increases parameters
and computations. DenseNet bottleneck (Middle) has very narrow
design, which inhibits feature propagation and reduces the feature
extraction efficacy. However, RSNet bottleneck (Right) has moderate
number of output features and transfers powerful features to next
layer.

Structural comparison of CondenseNet and our Relative Squeez-
ing technique is given in Fig. 3. CondenseNet (Left) increases the
growth rate for the next Block but still remains constant within each
block. Moreover, its transition layer only downsamples the input fea-
tures that produce a lot of parameters at later layers. In RSNet (Right),
output features moderately increase with input features increasing.
Compression layers in RSNet transfer less features to the next layer
(only 252 input features in 47th basic unit as compared to 848 in
case of CondenseNet), which makes its parameters less and compute
efficient.

2.3. Compression layer

Compression layer contains only one 1 × 1 convolution layer and
lies between two RS blocks. It does not contain any shortcut connec-
tions. In DenseNet, as block becomes deeper, features of initial layers
are transferred to later layers through shortcut connections. Then
the feature maps will be concatenated. Initial features lack the rep-
resentational power and contain less useful information for deeper
layers. Hence, compression layers are used to restrict the flow of
less useful features and create more powerful feature representa-
tions for deeper layers. It helps to reduce the number of feature maps,
transferred to next RS block, which results in similar classification
accuracy with less computational requirements and parameters. Let

Fig. 3. Structural comparison of CondenseNet (Left) and RSNet (Right), comprising 48
basic blocks each. CondenseNet has increasing growth rate of 8 − 16 − 32 and RSNet
has S1 = 0.2 and S3 = 0.5.

C denote compression ratio ranging between 0 and 1; Yc and Yl are
number of output channels of compression layer and RS block (with
l number of layers) respectively, then:

Yc = Dg(C ∗ Yl) (4)

Structure design of compression layer is given in Fig. 3 (Middle).

2.4. Transition layer

Transition layer contains a compression layer followed by an
average pooling layer. Design of transition layer is given in Fig. 3
(Right). Fig. 3 explains that in the first step, it compresses the num-
ber of channels and in the second step it reduces the size of feature
maps. Combination of these layers not only reduces the number of
feature maps and computational cost by down sampling, but also
produces more expressive features. Like compression layer, it does
not contain any shortcut connections and even not support concate-
nation operation as downsampling operation changes size of feature
maps. To facilitate compression and downsampling, we divide the
network architecture into multiple RS blocks and alternately insert
compression and transition layers between these blocks as shown in
Fig. 2.

2.5. Convolutional layers

2.5.1. Group convolutions
AlexNet introduces the idea of group convolutions to distribute

the model over two GPUs and is effectively exploited in ResNet.
Group convolutions work well in a lot of deep neural network archi-
tectures [27,33,34] and are intelligibly combined with depth-wise
separable convolutions in ShuffleNet. All layers in our structure use
group convolutions except first convolution layer. Group convolu-
tions reduce computational cost by a factor G (comparing with cost
when G = 1) to Fin × Fout/G, by partitioning the input features into
G mutually exclusive groups. Where, Fin and Fout are input and output
features (Fig. 4).

2.5.2. Learned Group Convolutions (LGCs)
Huang et al. [8] explained the importance of early features for

later layers but not all prior features are needed to every subse-
quent layers. It is difficult to predict which features are feasible at
what point. So, we employ the idea of LGCs [25] to learn the features
needed at subsequent layers besides selecting the most relevant
features for group convolutions.

2.6. Model configure and training details

2.6.1. Configuration details
We follow the same settings for all experiments, unless oth-

erwise specified. The 1st convolutional layer (3 × 3) implements
standard convolutions (G = 1) and the rest of all convolutions
are group convolutions. 1 × 1 Convolutions in RS Blocks use LGCs
from CondenseNet and condensation factor used in [25] is reduced
to number of groups. Output channels of convolutional layers in RS
units and compression/transition layers are calculated by multiply-
ing the squeezing ratio and compression ratio with input channels
respectively; the resulting output is rounded off to upper ceiling to
make it divisible by the number of groups. We have used both con-
stant and descending squeezing ratios S3 for training, while S1 and
C are kept for 0.2 and 0.5 respectively. Size of RS Blocks (B) is men-
tioned for major experiments. While these have been adjusted for
comparative analysis.



280 Q. Zhao, J. Liu, B. Zhang, et al. / Image and Vision Computing 89 (2019) 276–288

Fig. 4. Structure design of RS Unit (Up), compression layer (Middle) and transition layer (Below).

2.6.2. Training details
We follow most of the training settings used in [4]. Stochastic

gradient descent (SGD) is used with momentum weight of 0.9 (Nes-
terov Momentum = False) and weight decay of 0.0001. We use a
cosine shape learning rate starting from 0.1 and gradually reduc-
ing to 0. All models are trained for 200 epochs with mini-batch

Table 1
Comparison of classification error rate (%) with other convolutional networks on
CIFAR-10 (C-10) and CIFAR-100 (C-100) datasets. * indicates models that are trained
with cosine shape learning rate for 600 epochs. RSNet-135 uses constant squeezing
ratios (S1 = 0.2 and S3 = 0.5). In RSNet-195, S1 is set under the descending strategy
and using [0.25, 0.25, 0.2, 0.2, 0.15, 0.15] in each block. Here, S3 = 0.35.

Model Para(M) FLOP(M) C-10 C-100

ResNet-1001 [41] 16.1 2357 4.62 22.71
Stochastic-Depth-1202 [37] 19.4 2840 4.91 -
Wide-ResNet-28 [42] 36.5 5248 4.17 20.50
ResNeXt-29 [34] 68.1 10,704 3.58 17.31
DenseNet-190 [8] 25.6 9388 3.46 17.18
NASNet-A* [43] 3.3 - 3.41 -
CondenseNet-182* [25] 4.2 513 3.76 18.47
RSNet-135(G=4) 1.4 203 3.75 19.56
RSNet-195(G=8) 3.0 455 3.65 18.61

Table 2
Comparison of classification error rate (%) on CIFAR-10 (C-10) and CIFAR-100 (C-100)
with state of the art filter-level weight pruning methods and smaller models. RSNet-
135 uses S1= 0.2. And S3 is set under the descending strategy and using [0.6, 0.6, 0.5,
0.5, 0.4, 0.4] in each block. Model is trained for 300 epochs.

Model Para(M) FLOP(M) C-10 C-100

VGG-16-pruned [13] 5.40 206 6.60 25.28
VGG-19-pruned [44] 2.30 195 6.20 -
VGG-19-pruned [44] 5.00 250 - 26.52
ResNet-56-pruned [45] - 62 8.20 -
ResNet-56-pruned [13] 0.73 90 6.94 -
ResNet-110-pruned [13] 1.68 213 6.45 -
ResNet-164-B-pruned [44] 1.21 124 5.27 23.91
DenseNet-40-pruned [44] 0.66 190 5.19 25.28
CondenseNetlight-94 [25] 0.33 122 5.00 24.08
CondenseNet-86 [25] 0.52 65 5.00 23.64
RSNet-115(G=4) 0.32 63 4.83 23.23

size 64 for CIFAR and 256 for ImageNet, unless otherwise speci-
fied. We do not use group lasso regularization [35], which is used
in [25] for ImageNet experiments to minimize the negative effect of

Table 3
RSNet architecture for ImageNet; in is input features; stride= 2 for all average pooling
layers.

Layer Components Output size Output channels

Convolution 3 × 3Conv(stride=2) 112 × 112 48
RS
Block

1 × 1L-Conv 112 × 112 in*S1*S3

3 × 3G-Conv
Compression 1 × 1L-Conv 112 × 112 in*C
RS
Block

1 × 1L-Conv 112 × 112 in*S1*S3

3 × 3G-Conv
Transition 1 × 1L-Conv 56 × 56 in*C

Avg pool
RS
Block

1 × 1L-Conv 56 × 56 in*S1*S3

3 × 3G-Conv
Compression 1 × 1L-Conv 56 × 56 in*C
RS
Block

1 × 1L-Conv 56 × 56 in*S1*S3

3 × 3G-Conv
Transition 1 × 1L-Conv 28 × 28 in*C

Avg pool
RS
Block

1 × 1L-Conv 28 × 28 in*S1*S3

3 × 3G-Conv
Compression 1 × 1L-Conv 28 × 28 in*C
RS
Block

1 × 1L-Conv 28 × 28 in*S1*S3

3 × 3G-Conv
Transition 1 × 1L-Conv 14 × 14 in*C

Avg pool
RS
Block

1 × 1L-Conv 14 × 14 in*S1*S3

3 × 3G-Conv
Compression 1 × 1L-Conv 14 × 14 in*C
RS
Block

1 × 1L-Conv 14 × 14 in*S1*S3

3 × 3G-Conv
Transition 1 × 1L-Conv 7 × 7 in*C

Avg pool
RS
Block

1 × 1L-Conv 7 × 7 in*S1*S3

3 × 3G-Conv
Compression 1 × 1L-Conv 7 × 7 in*C
RS
Block

1 × 1L-Conv 7 × 7 in*S1*S3

3 × 3G-Conv
Pooling Global Avg(7 × 7) 1 × 1 in
Linear SoftMax - 1000
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Table 4
Comparison of Top-1 and Top-5 classification error rate (%) with other state-of-the-art
compact models on ImageNet. RSNet models are trained for 120 epochs. RSNet-215
uses descending S1 value but constant value of S3= 0.35. RSNet-197 uses S1= 0.2 and
descending value of S3 between 0.6 and 0.4.

Model Para(M) FLOP(M) C-10 C-100

Inception V1 [9] 6.6 1448 30.2 10.1
1.0 MobileNet-224 [24] 4.2 569 29.4 10.5
ShuffleNet 2x [27] 5.3 524 29.1 10.2
NASNet-A(N=4) [43] 5.3 564 26.0 8.4
NASNet-B(N=4) [43] 5.3 488 27.2 8.7
NASNet-C(N=3) [43] 4.9 558 27.5 9.0
CondenseNet(G=C=8) [25] 2.9 274 29.0 10.0
CondenseNet(G=C=4) [25] 4.8 529 26.2 8.3
RSNet-215(G=4) 2.2 396 28.5 9.5
RSNet-197(G=4) 3.1 499 26.3 8.3

weight pruning and over-fitting. RSNet uses only group convolution
in compression/transition layers to overcome this effect.

2.6.3. Decreasing squeezing ratio training strategy
We use decreasing squeezing ratio strategy to implement larger

and deeper models. Higher S in initial RS blocks generates more out-
put channels to accrue maximum advantage from diverse nature
of feature maps at initial layers. Deeper layers have abstract fea-
ture maps and more number of input features. Thus, lower S in
later blocks produces less number of feature outputs. It helps to
achieve improved accuracy while producing less number of param-
eters. Moreover, RS block contains less number of RS units in case
of small models and architectures with more compression layers;
thus need higher S values to produce significant number of features
before compression layer. Preliminary experiments demonstrate
that decreasing S3 gives better results than S1.

3. Results

The proposed RSNet is assessed on three datasets: CIFAR-10,
CIFAR-100 [36] and ImageNet (ILSVRC 2012) [20].

3.1. Datasets

CIFAR-10 and CIFAR-100 datasets contain RGB images of size
3232 pixels each corresponding to 10 and 100 classes, respec-
tively. Both datasets contain 60,000 images, which are divided into
50,000 training and 10,000 test images. Standard data-augmentation

Fig. 5. Effect of different components on classification error rate for different size
RSNet models. M means million.

Fig. 6. Classification error rate comparison for different squeezing ratios (S1). Param-
eters and FLOPs are the same in all the cases.

scheme in [17,24,25, 32,37-40] has been implemented to avoid over-
fitting. ImageNet contains 1.2 million training images and 50,000 val-
idation images with a total 1000 classes. Data-augmentation scheme
in [25] has been used at training time and rescaled to 256 before 224
center crop at test time.

3.2. Results

3.2.1. CIFAR-10/100
We carry out experiments on CIFAR-10 to validate the efficacy of

RSNet, with the new Relative Squeezing bottleneck layer. Then it will
be further evaluated on CIFAR-100.

Fig. 7. Effect of using shuffle layer [between 11 and 33 convolutional layers] and
11 learned group convolutions (LGCs) [in compression/transition (C/T) layers] on
classification error rate.

Fig. 8. Classification error rate curve of RSNet for ImageNet. Red dotted rectangle
indicates that maximum accuracy lies in 120 epochs.
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Fig. 9. Feature maps of CondenseNet and RSNet. (a) Feature maps of the final CondenseNet dense block; (b) feature maps of 1st RS block; (c) feature maps of 8th RS block.

RSNet architecture for CIFAR-10/100 is given in Fig. 2. InTable 1,
we compare experimental results of RSNet-135 and RSNet-195 with
other state-of-the-art CNN models. RSNet-135, with only 1/3 param-
eters and less than half Flops, achieves the same result on CIFAR-10.
RSNet-195, with only 2/3 parameters and less Flops, surpasses

CondenseNet-182 on CIFAR-10 and gives quite competitive result
on CIFAR-100 as well.

In Table 2, experimental results show that RSNet-115 outper-
forms filter-level weight pruning techniques [13,44,45] in all aspects.
It achieves higher accuracy than CondenseNet-86 with quite less
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parameters and CondenseNetlight-94 with half the number of FLOPs,
on CIFAR-10/100 datasets. Results are more pronounced on smaller
models like RSNet-115 and RSNet-135, and perform extremely
well.

3.2.2. ImageNet
RSNet architecture for ImageNet is given in Table 3. Most of the

configuration and training details are already covered in Section 2.6.
Compression layers along with moderate bottleneck design of RSNet
help in designing a much deeper model. Table 4 compares RSNet
results with state-of-the-art efficient CNNs. RSNet-215 outperforms
CondenseNet (G=8) in both Top-1 and Top-5 accuracies with less
parameters but more FLOPs. RSNet-197, with less than 2/3 times
parameters of CondenseNet (G=4) and less FLOPs, achieves close
results. However, more investigation is required to hit better results
that could not be carried out due to paucity of time. In Fig. 8, classifi-
cation error rate curves are continuously converging for 120 epochs,
which shows that models still have capacity to converge and produce
much better results with more number of epochs.

3.3. Ablation analysis

Ablation study has been carried out on CIFAR-10 to investigate
the effect of various factors.

Experimental results in Table 1 show that the proposed bot-
tleneck design helps to achieve better accuracy besides using less
computations or parameters. We also analyze the effect of other
components in Fig. 5. Our model (using LGCs, group convolu-
tions and compression layers) performs better than models without
LGCs, group convolutions and compression layers in all size models.
This validates efficacy of bottleneck design and use of multiple
compression layers. RSNet structures without group convolutions
and compression layers have similar results except the small model,
where RSNet without compression layers performs better. For large
size model, RSNet structure without LGC (still using group convo-
lutions) tends to improve performance towards baseline structure
and achieves higher accuracy than structures without group convo-
lutions and compression layers.

3.3.1. Varying squeezing ratio
Fig. 6 displays the result of changing squeezing ratios S1. It is

found that S1=0.1 and S1=0.2 have similar classification results,
but further increasing the squeezing ratio deteriorates the accu-
racy. Results show that large squeezing ratio leads to wider bottle-
neck design, which needs more parameters to hit certain accuracy
threshold. Low squeezing ratios implement the moderate bottleneck
design, produce less feature output channels and also help to design
deeper models. Better bottleneck design eventually helps to achieve
higher accuracy as compared to other models with the same number

Fig. 10. Feature maps of the 1st CondenseNet dense block. (a) Some feature maps are in lock state; (b) some feature maps are similar intuitively.
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of parameters and Flops. Squeezing ratio values less than 0.2 lead to
very deep models without any major improvement in classification
results. Thus, we select S1=0.2 for our experiments.

3.3.2. Shuffle layer and LGCs in compression /transition layer
We also investigate the effect of shuffle layer and use of LGCs

in compression and transition layer. The shuffle layer would be of
no use when LGCs are used, because these themselves select the
most suitable features from previous layers and learn related fea-
ture groups. Results in Fig. 7 approve our hypothesis that shuffle
layer, instead of improving the results, slightly increases classifica-
tion error. When output channel groups of 1 × 1 convolutional layers
are not shuffled, 3 × 3 convolutional layers produce diverse feature
outputs based on different group inputs; this slightly improves accu-
racy. Use of LGCs in all 1 × 1 convolutional layers leads to model
over-fitting. CondenseNet used Group Lasso Regularization to miti-
gate this effect in ImageNet experiments. For large models, this effect

Fig. 11. Result of reducing the feature maps of CondenseNet as well as RSNet final
dense block to 2 dimension by T-sne. And the points in red cycles show the simi-
lar feature maps, i.e. the redundant feature maps. (a) Reducing the feature maps of
CondenseNet to 2 dimension; (b) reducing the feature maps of RSNet to 2 dimension.

becomes vibrant and decreases classification accuracy. Results in
Fig. 7 show that large model with 3.1 M parameters has pronounced
effect of over-fitting. We use 1 × 1 group convolutions (without
LGCs) in compression/transition layers to curb this trend and to pro-
duce diverse features; thus enabling all 1 × 1 LGCs layers in the next
RS block to select most feasible feature maps.

4. Discussion

Convolutional filters could extract features from images which
will be more abstract in the deeper layers of the model. This part we
are going to clarify our motivation of purposing the RSNet model.
DenseNet improves the classification accuracy by reusing feature
maps from previous layers, while CondenseNet adopts LGCs mod-
ule to reduce the redundant parameters. At the same time, it also
focuses more on the later layers. These two models have made signif-
icant improvement in the image classification tasks. Moreover, our
team considers how to reduce parameters and improve computing

Fig. 12. Result of reducing the feature maps of CondenseNet as well as RSNet final
dense block to 3 dimension, by T-sne. (a) Reducing the feature maps of CondenseNet
to 3 dimension; (b) reducing the feature maps of RSNet to 3 dimension.
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efficiency further. So we visualize the feature maps of DenseNet
as well as CondenseNet separately, from 1st dense block to 3rd
dense block. Besides, the feature maps by T-sne method have been
visualized too.

4.1. Lock state feature maps

We find that some feature maps are not to be activated, i.e.
they are in lock state, both in the shallow layers and even in the
deep layers of CondenseNet. Fig. 9 (a) shows feature maps of the
final dense block in CondenseNet. Our experiments have shown that
the Relative-Squeezing bottleneck design not only slightly improves
the model accuracy, but reduces model parameters greatly. Besides,
when we visualize feature maps of 1st and 8th RS block, we find that
there is almost no feature maps in lock state both in shallow and
deep layer.

4.2. Redundant feature maps

Fig. 10 shows the feature maps from the first dense block of Con-
denseNet. Intuitively, we could clearly find that some feature maps

have similar distribution pattern and we could also find feature maps
in lock state here. Although these feature maps could not be consid-
ered useless, our work has shown that the fewer feature channels is
enough. And it could be realized by RSNet.

Furthermore, beyond the intuitive feeling, we are going to find
the similar distribution pattern of feature maps by T-sne.

For visualization, we reduce the feature maps of both Con-
denseNet and RSNet final block to 2 dimension (Fig. 11) and 3 dimen-
sion (Fig. 12), by T-sne. Although some information will be lost in the
process of reduction, we could surmise that there are some redun-
dant feature-maps among CondenseNet. Results of our experiments
also support that the redundant could be compressed. However,
Figs. 11 and 12 show that there are also some tiny redundant feature
maps.

4.3. Channel-wise similarity measure

To study redundant feature maps in the model, the experiments
on channel-wise feature maps similarity measurement are carried.
To measure the similarity among feature maps, the Kullback-Leibler
divergence (KL divergence, relative entropy) of different channel

Fig. 13. KL-divergence heat matrix of output feature maps of each dense block in CondenseNet after training 1 epoch. (a) KL-divergence heat matrix of dense block 1; (b)
KL-divergence heat matrix of dense block 2; (b) KL-divergence heat matrix of dense block 3.
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pairs will be calculated. The model of CondenseNet and RSNet will
be both trained 300 epochs (Figs. 13–15). After 300 epochs train-
ing, the top-1 error of both models will be less than 5%. And the KL
divergence will be calculated on the output feature maps of each
dense block, during the training process, in CondenseNet as well as
RSNet. The results will be given as a heat matrix: bright color means
the high difference between two feature maps, while the dark color
means they are similar. Fig. 13 shows that: after training 1 epoch, the
KL divergence among output feature maps of each dense block. We
could find that the output feature maps of dense block 1 have more
feature maps in different distribution, while the feature maps in deep
layers are more similar.

After training 260 epochs, Fig. 14 shows that lots of feature maps
share the low KL divergence value. In other words, the output feature
maps of each dense block in CondenseNet are similar. This result is
also in accordance with Sections 4.1 and 4.2, which show that some
feature maps in model are redundant.

However, after training 260 epochs, the KL divergence of feature
maps in RSNet is higher than that in CondenseNet, which means that
RSNet has less redundant feature maps. And we could find that both
in shallow and deep layers, feature maps in RSNet have the high KL
divergence with each other. We could conclude that the feature maps

in RSNet are more expressive. And the redundancy in CondenseNet
is invalid redundancy, which could be compressed in the model. And
RSNet just gives the solution to this problem (Fig. 15).

5. Conclusion

A new CNN structure is proposed RSNet, which integrates
the new bottleneck layers, learned group convolutions, compres-
sion layers and transition layers. Our new bottleneck design—
Relative Squeezing—emphasizes that moderate bottleneck design
could achieve higher accuracy with substantially less parameters and
computations. It reduces the output channels of bottleneck layer in
the shallow layer, while increases the output channels of it in the
deep layer. Multiple compression layers produce more expressive
feature maps, which reduce computational and parameters over-
head by discarding superfluous features. In the ablation study, we
investigate the effect of different squeezing ratios, different structure
components and existence of shuffle layer in the presence of LGCs.
RSNet achieves state-of-the-art results with less parameters as well
as less compute. Thus, the design of RSNet bottleneck layer would be
a good option for the application of resource limited hardware.

Fig. 14. KL-divergence heat matrix of output feature maps of each dense block in CondenseNet after training 260 epoch. (a) KL-divergence heat matrix of dense block 1; (b)
KL-divergence heat matrix of dense block 2; (b) KL-divergence heat matrix of dense block 3.
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Fig. 15. KL-divergence heat matrix of output feature maps of each dense block in RSNet after training 260 epoch. (a) KL-divergence heat matrix of dense block 1; (b) KL-divergence
heat matrix of dense block 5; (b) KL-divergence heat matrix of dense block 10.
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