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Abstract — Frequency diverse arrays (FDAs) have raised
increased attention due to their ability of range-dependent
beamforming and auto-scanning in angle by employing an extra
frequency variation across the array elements. The range and
angle of an FDA’s beampattern are coupled, hence resulting in
ambiguity for target detection. To overcome this problem, several
methods have been proposed recently, among which pairing
linearly increasing frequency offsets with a nonuniform linear
array and pairing a uniform linear array with non-uniformly
increasing frequency offsets are two typical employed methods.
However, these methods usually assume both the element
position and frequency offset can be continuously adjusted.
In this paper, uncoupled FDA beampattern is synthesized by
pairing two predefined sets of discrete element positions and
discrete frequency offsets. As the optimum pairing of two
variables requires an exhaustive search of two sets, we modify a
particle swarm optimization (PSO) algorithm to solve the integer
programming problem. Some numerical results are provided to
verify the effectiveness of our proposed approach.
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frequency increment, non-uniform array, pairing

I. INTRODUCTION

Frequency diverse array (FDA) was firstly proposed by

Antonik et al. [1] in 2006 and has attracted increased attention

in recent years. Unlike the conventional phased arrays, FDA is

capable of producing a beampattern with controllable direction

and range by shifting the carrier frequencies across the

elements. Because of the characteristics of range-dependent

and auto-scanning beampattern, FDA has the ability to

illuminate multiple targets at different angles simultaneously

[2]. Moreover, it has the potential to isolate and suppress the

strong interferences at the same angle but different ranges.

The transmit beampatterns of FDAs characterize the

detection performance of active radar systems and is

determined by both antenna positions and shifted frequency

increments. The standard uniform linear FDAs with linear

frequency offset produce an S-shaped beampattern which

suffers from coupling range and angle response, thus limiting

their applications in target detection due to ambiguity. As

a result, some methods of FDA beampattern synthesis have

been proposed to achieve a range-angle decoupled beampattern

[3]–[5]. Since the amplitude and spatial distribution of

range-dependent pattern are controlled by the frequency

shift assigned to each element and the distance between

the elements of the transmit array [6], the basic idea of
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FDA beampatten synthesis strategies is to either adjust the

frequency offsets or place the array elements in proper

positions. Wassem Khan et al. proposed a uniformly spaced

linear FDA with logarithmically increasing frequency offsets to

provide a non-periodic beampattern [7]. However, this method

exhibited a long tail in the response pattern, resulting in low

range and angle resolution. Then a dot-shaped range-angle

beampattern was achieved in [8] by optimizing the frequency

increments using genetic algorithm. Similarly, [9] achieved

the thumbtack-shaped FDA beampattern by applying the

nonuniform logarithmic frequency offsets over a uniform linear

array.

In this work, we first examine the reason why a standard

FDA produces the S-shaped coupled beampattern and then

propose to synthesize the uncoupled FDA beampattern by

pairing two predefined sets of discrete element positions and

discrete frequency offsets from the viewpoint of pragmatic

implementation. As optimum subset selection is an NP-hard

problem, a particle swarm optimization (PSO) algorithm is

applied to solve the integer programming problem with the

objective function formulated from the derived conditions.

The rest of this paper is organized as follows. Section

II provides the mathematical model of FDA and derive

the conditions of decoupled pattern. We then introduce

the synthesis of uncoupled range-angle beampattern through

proper pairing of antenna position and frequency offsets in

section III. Some simulation results are provided in the Section

IV and we conclude the results in Section V.

II. THE STANDARD FDA

Consider a linear FDA composed of N identical antenna

elements placed at the positions pn, n = 1, . . . , N . Each

element transmits a sinusoidal waveform with a small

frequency shift Δfn from the carrier frequency f0. Thus, the

signal emitted from the n-th element of an N -element linear

array is given by

sn(t) = e2πfnt (1)

and

fn = f0 +Δfn, n = 1, · · · , N (2)

where f0 denotes the carrier frequency. Let us consider a

standard uniform linear FDA first, pn = (n − 1)d with

d denoting a unit inter-element spacing and the frequency

increments are also linear, Δfn = (n − 1)Δf with Δf
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denoting the unit frequency increment. The beampattern of

a standard FDA in the far field can be expressed as

bp(R0, θ, t) =

N−1∑
n=0

wn

R0
ej2π(fnt−

Rn
λn

) (3)

where Rn = R0 − nd sin θ denotes the distance between the

n-th antenna element and the far-field target, wn is the current

excitation imposed on the nth antenna element.

To simplify Eq. (3), we assume a uniform current excitation

over the array w0 = w1 = · · · = wN−1 = 1. For a given time,

e.g., t = 0, the beampattern in Eq. (3) can be rewritten into

Eq. (4).

bp(R0, θ) ≈
N−1∑
n=0

1

R0
e−j2πRn

λn (4)

=
1

R0

N−1∑
n=0

e−j2π(f0+nΔf)
(R0−nd sin θ)

c

=
1

R0

N−1∑
n=0

ej2π[
f0R0

c −nf0d sin θ
c +

nΔfR0
c −n2Δfd sin θ

c ],

≈ 1

R0
ejk0R0

N−1∑
n=0

e−jn[k0d sin θ−ΔkR0],

=
1

R0
ejk0R0e−j(N−1)ϕ/2 · sin(Nϕ/2)

sin(ϕ/2)
,

where

c = speed of light, k0 =
2π

λ0
=

2πf0
c

,

Δk =
2π

Δλ
=

2πΔf

c
, ϕ = k0d sin θ −ΔkR0.

Thus, the magnitude of the FDA beampattern can be

expressed as,

|bp(R0, θ)| = 1

R0

∣∣∣∣ sin(Nϕ/2)

sin(ϕ/2)

∣∣∣∣ . (5)

The beampattern will reach a maximum when

ϕ = k0d sin θ −ΔkR0 = 2mπ, m = 0,±1, · · · (6)

Solving for range yields,

R′
0 =

(
− c

Δf

)
m+

(d/λ0)c sin θ

Δf
(7)

We can see from Eq. (7) that, the beampattern of a standard

FDA exhibits S-shaped as the range R′
0 changes sinusoidally

with the direction θ when grating lobes happen. This

ambiguity is inherited from the standard FDA with uniformly

spaced antennas and uniform frequency increments. In order

to break the ambiguous beampattern of a standard FDA,

either the antenna positions or frequency offsets should be

adjusted properly. Ideally, the beampattern magnitude should

be suppressed outside the area of interest, i.e. bp(r, θ) <
ε, r ∈ R̄, θ ∈ Θ̄, we then can achieve a thumbtack-shaped

beampattern, where ε is a given threshold, R̄ is the range of

non-interest and Θ̄ is the angle of non-interest.

III. THE PROPOSED METHOD

A. Mathematical Model

As continuously adjusting both antenna positions and

frequency offsets is not implementable in practice, we consider

to change them simultaneously by pairing two sets of discrete

values in this paper. Consider a linear FDA with Q antennas,

which can be placed on N potential grid points with uniform

inter-element spacing of d = λ0/2. Taking the first element as

the reference, the position of the q-th element is

xq = pqd, q = 1, · · · , Q (8)

where pq ∈ {0, · · · , N − 1}. Moreover, the carrier frequency

of the monotone signal emitted from the qth element is

shifted from the reference frequency f0 by an amount chosen

from a set of linearly increasing frequency increments, e.g.,

0,Δf, · · · , (M − 1)Δf . The carrier frequency of the q-th

element is written as,

fq = f0 +mqΔf, (9)

where mq is an integer such that mq ∈ {0, · · · ,M − 1} and

M is the number of available frequency increments.

A schematic diagram of FDA element position and

frequency offset pairing is shown in Fig.1. The x-axis shows

the possible positions where antenna elements can be placed

and the y-axis shows all the possible frequency increments.

The coordinates of the q-th black square indicate both the q-th

antenna position and its corresponding frequency offset from

the reference carrier.

Substituting Eqs. (8) and (9) into Eq. (3), the beampattern

can be rewritten as

bp(R0, θ) =

Q∑
q=1

e−j2π(f0+mqΔf)·R0−pqd sin θ

c

=

Q∑
q=1

e−j 2π
c (f0R0+mqΔfR0−f0pqd sin θ−mqΔfpqd sin θ)

≈
Q∑

q=1

e−j 2π
c (f0R0+mqΔfR0−f0pqd sin θ) (10)

The steering vector of the transmit FDA is defined as

a(R0, θ) = [a1(R0, θ), a2(R0, θ), · · · , aQ(R0, θ)]

= aD(θ)� aR(R0) (11)

where

aD(θ) =
[
ejk0p1d sin θ, ejk0p2d sin θ, · · · , ejk0pQd sin θ

]
(12)

and

aR(R0) =
[
e−jΔkm1R0 , e−jΔkm2R0 , · · · , e−jΔkmQR0

]
(13)

where � denotes the Hadamard product.

In array processing, the beampattern characterizes the

system response of an array beamformed in one direction to

a unit amplitude target located in another direction. Assume
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the target is located at (R1, θ1), and the transmit array is

beamformed towards (R2, θ2), the array response is

ρ {(R1, θ1), (R2, θ2)} =
< a(R1, θ1), a(R2, θ2) >

‖a(R1, θ1)‖2‖a(R2, θ2)‖2 , (14)

where < ·, · > denotes the inner produce operation. Submitting

Eqs. (12) and (13) into Eq. (14) yields,

ρ {(R1, θ1), (R2, θ2)} (15)

=
1

Q
[aR(R1)� aD(θ1)]

H [aR(R2)� aD(θ2)]

=
1

Q
[a∗D(θ1)� aD(θ2)]

T [a∗R(R1)� aR(R2)]

=
1

Q

Q∑
q=1

e−jk0pqd(sin θ1−sin θ2)ejk0(R1−R2)ejΔkmq(R1−R2)

=
1

Q
ejk0(R1−R2)

Q∑
q=1

e−jk0pqd(sin θ1−sin θ2)ejΔkmq(R1−R2)

Proceeding from Eq. (15), the amplitude of beampattern

depends on the sum of Q terms, referred to as the correlation

quotient f(R1, R2, θ1, θ2). That is,

f(R1, R2, θ1, θ2) =

Q∑
q=1

e−jk0pqd(sin θ1−sin θ2)ejΔkmq(R1−R2)

(16)

Then the amplitude of correlation quotient is,

|f(R1, R2, θ1, θ2)|2 (17)

= f(R1, R2, θ1, θ2) · f∗(R1, R2, θ1, θ2),

=

Q∑
i,q=1

(cosΘi + j sinΘi)(cosΘq − j sinΘq),

=

Q∑
i,q=1

cos(Θi −Θq) + j sin(Θi −Θq),

where

Θq = −k0pqd(sin θ1 − sin θ2) + Δkmq(R1 −R2). (18)

As the amplitude of correlation quotient in Eq. (17) must be

non-negative, i.e.
∑Q

i,q=1 sin(Θi−Θq) = 0. Then Eq. (17) can

be rewritten as

|f(r1, r2, θ1, θ2)|2 =

Q∑
i,q=1

cos(Θi −Θq),

= Q+

Q∑
i,q=1,i�=q

cos(Θi −Θq), (19)

where

Θi−Θq = Δk(mi−mq)(R1−R2)−k0(pi−pq)d(sin θ1−sin θ2).

Clearly, when R1 = R2 and θ1 = θ2 simultaneously, Eq.

(19) can achieve maximum value of N2. The purpose of our

design is to make the beampattern achieves the maximum value
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Fig. 1. Schematic diagram of FDA element position and frequency offset
pairing, where the � denotes the discarding antenna and the black square
represents the corresponding element position and frequency shift of the
selected antenna.

only once meanwhile the sidelobe is controlled under a given

threshold ε.
Let us set

ξ = Δk(R1 −R2), η = −k0d(sin θ1 − sin θ2). (20)

The objective function of choosing the optimum pair of

antenna position and frequency offset can be expressed as

Q∑
i,q=1,i�=q

cos [ξ(mi −mq) + η(pi − pq)] < ε, (21)

for the non-interested region of range R̄ and direction θ̄.

B. The Modified PSO Method

Consider a transmit array with Q elements, which can be

placed on N grid points and the frequency increments are

selected from M candidates, the total number of pairs of

element position and frequency increment is

K = CQ
N ·AQ

M , (22)

where CQ
N denotes the number of all combinations selected Q

elements from N candidates and AQ
M = AQ

QC
Q
M denotes the

product of the factorial of Q and the combination.

The computational complexity will be prohibitively high

if an exhaustive search is conducted over all K possible pairs

even for a moderate number. In this paper, we modify the

PSO algorithm to solve the optimum pairing thanks to its

excellent performance in integer programming problems. The

description of PSO algorithm is summarized in Table 1.

IV. SIMULATION RESULTS

To validate the effectiveness of the proposed scheme, some

numerical simulations of existing FDA beamforming schemes

are provided for comparison. Without loss of generality, we

assume the desired beampattern is focusing on the origin (0, 0).
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Table 1. FDA beampattern synthesis by pairing antenna position and
frequency offset using PSO

Input: N,M,Q,Δf, ε, noP,G, Vmax, wmax, wmin, c1, c2
Output: Element position, frequency offset
1 Set the dimension of searching space is equal to N +Q,

where N -dimensional coordinates denote the element
positions (’1’ denotes selected, ’0’ denotes discard) and
Q-dimensional coordinates denote frequency offsets.

2 Set population size noP = 100, the generations G = 500,
Vmax = 10, wmax = 0.9, wmin = 0.4 and c1 = c2 = 2.

3 Initialize the first generation of particle swarm, set g = 1.
4 Calculate the fitness value of particles according to the left

side of Eq. (21).
5 Update the weight coefficient according to the equation

w = wmax − wmax−wmin
G

.

6 Update the global best position, optimize the particle
velocity and position, then set g = g + 1.

7 Return to step 4 if the maximum generations G or ε is
not attained.

8 Terminate and record the optimal pair.
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Fig. 2. The beampattern of different frequency diverse arrays. (a) standard
FDA; (b) optimize frequency increments using GA; (c) logarithmic offsets;
(d) nonunioform logarithmic offsets.

The preset parameters are list in Table.2, where B denotes

the generic bandwidth of signal. For proposed method, the

parameters N = 60,M = 300, Q = 49 and the unit frequency

increment Δf = 1 KHz are assumed.

In Fig.2(a), it can be seen that the standard FDA represents

the S-shaped beampattern. Compare to the standard FDA,

Fig.2(b) shows the synthesized dot-shaped beampattern using

GA algorithm proposed on [8], which most of the energy is

focus on the origin. Fig.2(c) and Fig.2(d) show the beampattern

of uniform logarithmic offset and nonuniform logarithmic

offset proposed in [7] and [9], respectively. It is obvious that

the beampattern of nonuniform logarithmic offset is superior

than the uniform one in range resolution.

The beampattern of the proposed method is presented

in the Fig.3. Compare with Fig.2, the proposed method

has thumbtack-shaped beampattern. It can achieve

better performance in terms of range-angle resolution,
peak-to-sidelobe ratio and beampattern periodicity.

Table 2. The comparison of different FDA beamforming schemes.

FDA f0 = 10GHz,B = 0.3GHz, d = λ0/2

antennas array configuration
standard FDA 30 uniform

log FDA 49 uniform

GA-optimized FDA 16 uniform

non-log FDA 49 uniform

our method 49 nonuniform
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Fig. 3. The beampattern of discrete element position and frequency offsets
pairing. (a) 2D view, the white block is a zoom-in view of (a); (b) 3D view.

V. CONCLUSIONS

We analyzed the mathematical model of FDA beampattern

synthesis and formulated an objective function to synthesize

the range-angle decoupled beampattern by properly pairing

the antenna positions and frequency offsets. As continuously

adjusting the element position and frequency increments is not

practical, we proposed to select the optimum pairing from

two discrete sets in this work. The modified PSO algorithm

performs well for solving the optimum pairing.
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