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A Simplified Decoding Method of Polar Codes Based on Hypothesis Testing

He Sun , Rongke Liu , Senior Member, IEEE, and Chenyu Gao

Abstract— In this letter, a simplified successive cancellation
decoding algorithm of polar codes is proposed, where a hard
decision rule is adopted by exploiting the prior information
in frozen bits for better decoding performance. Considering
the difference of the node reliability, a hypothesis-testing-based
strategy is designed to select reliable unstructured nodes for hard
decision. Then the reliable nodes are decoded by the proposed
hard decision method without serial recursion, which reduces the
decoding latency. Simulation results show the advantages of the
proposed method in terms of the decoding latency and error-
correction ability compared with the existing methods.

Index Terms— Polar codes, hypothesis testing, hard decision.

I. INTRODUCTION

POLAR codes are capacity-achieving channel codes with
a simple encoder and the successive cancellation (SC)

decoder [1]. However, the SC decoder suffers from high
decoding latency due to the serial nature of decoding.
To address this problem, the simplified SC (SSC) decoder is
proposed, in which the Rate-0 and Rate-1 nodes are defined
to be decoded instantly by hard decision. Based on particular
structures of rate-r nodes, fast-SSC [2] defines the single-
parity-check (SPC) node, the repetition (REP) node and some
merged nodes [3], which include the REP-SPC, 0-SPC and
01 nodes. In [4], five new constituent nodes are proposed to
increase the decoding speed. These methods leverage specific
node structures to reduce latency. However, the nodes without
specific structures, called unstructured nodes [5], cannot be
simplified by these structured SC decoding methods or their
list decoding versions [6], [7]. Independent of specific node
structures, the SC decoders with look-ahead increase the
parallelism of decoding operations from the perspective of
decoding schedules [8] or improve the decoding performance
by exploiting multiple codewords [9]. To simplify the decoding
of unstructured nodes, the NEP-SSC [5] adopts a threshold
based on the Monte Carlo simulation to identify reliable
nodes. Then hard decision is implemented directly on reliable
unstructured nodes. However, there is at least one frozen
bit in each unstructured node, which provides more prior
information. The direct implementation of hard decision on
unstructured nodes ignores the prior information. Therefore,
there is still potential for performance improvement.
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Fig. 1. The SC decoding tree of polar codes with N = 8.

This work is aimed to simplify the decoding of unstructured
nodes and improve decoding performance, where a hypothesis-
testing-based hard decision (HTHD) algorithm is proposed.
In the HTHD method, a novel hard decision rule exploits
the prior information of frozen bits to improve decoding
performance. In view of the difference in the node reliability,
a hypothesis testing strategy is devised to select reliable
unstructured nodes without Monte Carlo simulation, which
has better robustness and universal applicability. Then reli-
able unstructured nodes are decoded by the proposed hard
decision method without complex recursion, thereby reducing
the decoding latency. Moreover, the HTHD method can be
integrated with the structured methods for lower latency.
Simulation results show that the HTHD method significantly
reduces the decoding latency with better error-correction per-
formance.

II. PRELIMINARIES

A. Polar Codes

A polar code of length N = 2n is generated by xN
1 =

uN
1 GN , where uN

1 = (u1, u2, . . . , uN ) is the input sequence
and xN

1 = (x1, x2, . . . , xN ) is the codeword sequence. The
generator matrix is GN . After encoding, the codeword xN

1 is
modulated by binary phase shift keying (BPSK) and sent to
the channel, and then the channel outputs yN

1 . To construct
a polar code (N, K) with code length N and K information
bits, the K information bits are assigned to the reliable sub-
channels. The remaining N−K bits, called frozen bits, are
set to values known by both the encoder and decoder. In this
letter, we assume that the values of frozen bits are all set
to 0, which is called the freezing constraint. Let F and Fc

denote the index sets of the frozen bits and the information
bits, respectively.

B. SC and SSC Decoder

Fig. 1 shows the decoding procedure in a binary tree.
The black and white leaf nodes are information and frozen
bits, respectively. The white, gray and black nodes repre-
sent the Rate-0, Rate-r and Rate-1 nodes, respectively. The
local decoder begins at the root node, which is initial-
ized by the received messages γvroot = [λ(1)

v ,...,λ(N)
v ] , where
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λ(i) = log

�
Pr(yi|xi=0)
Pr(yi|xi=1)

�
is the log-likelihood ratio (LLR). The

decoder at node v calculates γvl
and starts the calculation of

its left node vl by

λ(i)
vl

= 2tanh−1

{
tanh

[
λ

(2i−1)
v

2

]
tanh

[
λ

(2i)
v

2

]}
, (1)

where i = 1, . . . , 2n−dv−1 and dv represents the depth of
the node v. The vector γvl

can be calculated in parallel
with sufficient processing elements in one time step [5],
where time steps denote the sum of clock cycles required
by decoding operations [2], [5], [6]. After receiving decision

results β̂vl
=

�
β̂(1)

vl
,...,β̂

(2n−dv−1)
vl

�
from vl, node v starts the

calculation of γvr on its right descendant node vr by

λ(i)
vr

= λ(2i−1)
v

(
1 − 2β̂(i)

vl

)
+ λ(2i)

v . (2)

When the node v receives β̂vr from vr, it obtains β̂v by

β̂(2i)
v = β̂(i)

vr
, β̂(2i−1)

v = β̂(i)
vl

⊕ β̂(i)
vr

, (3)

where ⊕ is the exclusive-or operation. After obtaining β̂v,
the decoding procedure of v is finished, and the same opera-
tions are carried out at the next node. Especially, the decoder
performs hard decision at the information leaf nodes by

β̂vleaf
=

{
0, if λvleaf

≥ 0,

1, otherwise.
(4)

To reduce the decoding latency, the SSC decoder is pro-
posed, where hard decision is performed at the Rate-0 and
Rate-1 nodes immediately, which omits the subsequent decod-
ing recursion in the descendant nodes.

III. HYPOTHESIS-TESTING-BASED HARD DECISION

METHOD FOR UNSTRUCTURED NODES

The freezing constraint limits the valid codeword space.
However, the NEP-SSC [5] performs hard decision directly
in reliable nodes, which might obtain invalid codewords that
do not meet freezing constraints. To deal with this problem,
we design a novel hard decision method, which exploits the
prior information of frozen bits and ensures that the decision
results are compliant with the freezing constraint.

A. A Novel Hard Decision Method

The original hard-decision in node vc
1 = (v1, . . . , vc) is

v̂c
1 = arg

[
max
v̂c
1∈Bc

(p (v̂1) p (v̂2) . . . p (v̂c))
]

, (5)

where B denotes the set of binary numbers. For i ∈ {1, . . . , c},
p (v̂i) = W

(
yN
1 , û|v̂i

)
. W

(
yN
1 , û|v̂i

)
is the transition proba-

bility [1]. The relative order in (5) remains unchanged after
dividing the products by a same number. Therefore, we have

v̂c
1 = arg

[
max
v̂c
1∈Bc

(
p (v̂1) p (v̂2) . . . p (v̂c)

p (v1 = 1) . . . p (vc = 1)

)]
. (6)

Another expression of (6) in the logarithmic domain is

v̂c
1 = arg

[
max
v̂c
1∈Bc

c∑
i=1

(1 − v̂i) λi

]
, (7)

where λi = ln [p (v̂i = 0) /p (v̂i = 1)] denotes the LLR of vi.

Let D express the logarithmic-domain metric
c∑

i=1

(1 − v̂i)λi.

Due to the freezing constraints, the correct decoding result
must meet ui = 0 for i ∈ F , where uc

1 = vc
1Gc. Owing to

the short node length c, a look-up table is used to convert
the decision results v̂c

1 into original sequence ûc
1 for the

freezing check in one time step. The table stores the mapping
relationships between the ûc

1 and the codeword v̂c
1. For a

reliable node with length c, there are 2c groups of one-to-one
mapping relationships. All nodes with the same length share
the same look-up table. The proposed hard-decision rules are

ûc
1 = arg

[
max
uc
1∈Bc

(D)
]

s.t.ûi = 0, i ∈ F . (8)

In (8), the decoding path with the largest metric among the
candidate paths which satisfy the freezing constraint is selected
as the result of the hard decision. However, the number
of candidate paths is 2c. Excessive complexity is involved
in decoding all the candidate paths. To solve this problem,
we propose a heuristic method to construct candidate paths
with large metrics. Obviously, the path with the largest D is

v̂i =

{
0 if λi ≥ 0,

1 if λi < 0.
(9)

Let v̂c
1[1] denote the decision results with the largest D.

We propose the following method to obtain candidate paths.
Proposition 1: For 2 ≤ k ≤ 3 and j ∈ {1, 2, . . . , c},

the path v̂c
1 [k] with the k-th largest metric can be represented

as

v̂j [k] =

⎧⎨
⎩

v̂j [1] ⊕ 1 when j = argmink−1
i∈{1,...,c}

{|λi|},

v̂j [1] otherwise,
(10)

where argmink
i∈{1,...,c}

{|λi|} is the index of the k-th smallest |λ|.
Proof: Based on the definition of D, the maximum is

D1 =
1
2

c∑
i=1

[1 + sign (λi)]λi. (11)

It can also be observed that the metric D is determined by
the estimated results v̂c

1 and LLRs. Since the LLRs are fixed,
other candidates can be obtained by flipping the estimated bit
v̂t. For each v̂t, when it flips into v̂t ⊕ 1, we have

D(vt) =
c∑

i=1,i�=t

(1 − v̂i)λi + (1 − v̂t ⊕ 1)λt,

= D1 − |λt| . (12)

Therefore, the second largest metric is

D2 = D1 − min
t∈Zc

1

{|λt|} , (13)

where Zc
1 = {1, 2, . . . , c}. The second largest path can be

obtained by flipping ûj of v̂c
1[1], where j = argmin

t∈Zc
1

{|λt|}.

Then, the third largest metric is

D3 = D1 − min 2
t∈Zc

1

{|λt|} , (14)
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Fig. 2. BLER performance with different zα (a) and L (b). (N = 1024 bit).

where min 2 {·} denotes the second smallest value. The third
largest path can be obtained by flipping v̂j in v̂c

1[1], where
j = argmin

t∈Zc
1

2 {|λt|}. Then we obtain (10).

Eq. (10) indicates that the path with the k-th largest D can
be obtained by flipping the bit with the (k-1)-th smallest |λ|
in the largest path v̂c

1[1]. The Chase decoding [10] and the
fast list decoder [7] construct limited candidate codewords
by considering several unreliable bits. We adopt this method
to limit the complexity of hard decision decoding. Since the
paths with small metrics are unreliable, we consider the first L
paths with the largest metrics. Through simulation in Fig. 2(b),
we found that a good error-correction ability can be obtained
with L = 3. Owing to building multiple paths and exploiting
the freezing constraints, the performance of hard decision
decoding is further improved.

B. Evaluation of Node Reliability With Hypothesis Testing

Due to the channel polarization and the noise, the node
reliability varies among unstructured nodes. In [5], a threshold
based on the bit error probability and a multiplicative factor
is adopted to select reliable nodes. However, the factor is
determined by Monte Carlo simulation, which might cause
instability. To solve this problem with a more robust method,
we propose a hypothesis-testing-based method to select reli-
able nodes for hard decision, where a closed-form expres-
sion of a dynamic threshold is devised without Monte Carlo
simulation.

To measure the reliability of node vc
1, we define the null

hypothesis and the alternative hypothesis as follows

H0 : vc
1 ∈ Θ, H1 : vc

1 ∈ Θc, (15)

where Θ is the set of reliable nodes. When H0 is accepted,
the hard decision is performed on node vc

1. Let vi denote
the element in node vc

1, where i ∈ {1, . . . , c}. Because
the absolute value of LLR monotonically decreases with the
increase of node error probability, we adopt the LLR as
the test statistic. Let Ti denote the threshold for vi. If ∀
i ∈ {1, . . . , c}, |λvi | > Ti, the H0 will be accepted and hard
decision is performed. Let ût

1 be the estimated bits. The bit
error probability of hard decision is

Ped

(
β̂vi �= βvi |yN

1 , ût
1 = ut

1

)
= P (λvi < −Ti)P (βvi = 0) + P (λvi > Ti)P (βvi = 1) .

(16)

Assuming that an all-zero codeword uN
1 = 0 is encoded and

then modulated by BPSK, the distribution of LLR arising in
the Arikan polarizing transformation can be approximated by
Gaussian, i.e., λi ∼ N (μi, 2μi) in binary-input additive white
Gaussian noise (BAWGN) channel [11], [12]. Given code
length N and rate R, the mean value μ can be calculated by
Gaussian Approximation (GA) offline at given signal-to-noise
ratio (SNR). Then the probability in (16) is represented as

Ped = P (λvi < −Ti) . (17)

To restrict decoding performance loss, we set

P (λvi < −Ti) ≤ α, (18)

where α is the significance level of hypothesis testing. To max-
imize the number of nodes simplified by hard decision, it is
recommended that Ped = α, which is equivalent to

P (λvi < −Ti) = P (zi < zα) = α, (19)

where zi = λvi
−μi√
2μi

∼ N (0, 1), zα is the quantile of standard
normal distribution at level α. Therefore, we have

λvi < zα

√
2μi + μi. (20)

The threshold Ti can be calculated by

Ti = −zα

√
2μi − μi. (21)

The proposed threshold is a function of the quantile and the
mean value, where the influences of code length, code rate
and SNR on node reliability are comprehensively considered.
Consequently, the threshold has better robustness and universal
applicability. There are N (logN -2) threshold values.

If the LLRs on node vc
1 = (v1, . . . , vc) satisfy |λi| > Ti for

i = 1, 2, . . . , c, the H0 is accepted and node v will be decoded
by the proposed hard decision method, where the computations
for the descendant nodes are avoided and the decoding latency
is reduced. Otherwise, this node is treated as unreliable node
and the decoding in its descendant nodes will be performed.

C. Decoding Latency Analysis

To evaluate node reliability, comparison operation is per-
formed simultaneously with the calculation of γ [5]. Besides,
the proposed hard decision method contains flipping bits to
obtain candidate paths, checking the freezing constrains and
selecting the correct path, which takes three time steps.

Moreover, for a reliable node with length Nv , the calculation
in its 2Nv −2 descendant nodes is omitted, which reduces the
decoding latency and complexity. Because the dependence on
node structures is overcame, the Nv is expanded in high SNR
region, thereby further reducing the decoding latency.

IV. SIMULATION RESULTS

Simulation is performed to evaluate the block error rate
(BLER) and the decoding latency. Codewords are modulated
by BPSK in the BAWGN channel. Polar codes (1024, 512),
(4096, 2048) are designed by GA. Since the length of the node
affects the node partition, we set the minimum node length to
4 or 8 in simulation for our proposed HTHD method.
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Fig. 3. Comparisons of the BLER with zα = −3 (a) and zα = −5 (b).

A. Decoding performance

Fig. 2 depicts the BLER with different zα and L. The
BLER tends to be stable with the decrease of zα and the
increase of L. A small zα corresponds to a strict constraint.
According to the results in Fig. 2 (a), we set zα ∈ {−3,−5}
in simulation. Confirming to Section III-A, when L > 3, there
is no significant BLER gain as L increases.

Fig. 3 shows that the BLER of the HTHD method is nearly
the same with that of the SSC decoder. For L = 3, the HTHD
achieves approximately 0.2 dB SNR gain in high SNR region
because the proposed hard decision rules exploit the freezing
constraints and utilize multiple paths synthetically. Besides,
the BLER with zα=−5 is slightly lower than that with zα=−3
because a smaller zα corresponds to a tighter constraint, which
indicates that the hypothesis testing can improve the decoding
performance by setting strict test conditions. Considering that
the accurate SNR often cannot be obtained in actual systems,
we also give the BLER performance of the HTHD method
with a fixed set of thresholds and a fixed reliability sequence
constructed at SNR = 3.5 dB. In Fig. 3, the curves labeled
by “fixed” show that the proposed HTHD method works well
with the fixed construction of thresholds and polar codes.

B. Decoding Latency

Assuming that the processing elements are capable of
calculating the message vectors simultaneously, the calculation
of messages γv needs one time step. In the structured methods,
a rate-r node v takes two time steps to calculate γvl

and γvr ,
while waiting for tl and tr time steps during the informa-
tion transfer process in its left and right descendant nodes,
respectively [5]. According to Section III-C, the proposed hard
decision on an unstructured node takes three time steps, which
reduces tl +tr−1 time steps relative to the structured decoder.

Since the proposed HTHD method simplifies the decoding
of unstructured nodes, it can be combined with the structured
methods for lower latency. Comparisons are made among the
structured decoder, the NEP-SSC and the HTHD methods.
Fig. 4 (a) depicts the reduction in terms of the decoding latency
of the three methods relative to the SSC decoder, respectively.
For N=1024 and zα=−5, the HTHD method yields lower
latency with SNR gain of 0.2 dB than the NEP-SSC at
BLER=10−5. For N=4096, the quantile realizes the tradeoff
between the BLER and latency. The average latency reduction
by HTHD with zα=−3 is larger than that with zα=−5 because
a small zα leads to a small set of reliable nodes. For zα=−3,

Fig. 4. (a) Depicts the average latency reduction proportion and (b) shows
the worst case of reduction proportion in decoding latency with zα = −3.

the HTHD has the lowest latency and nearly the same BLER
with the SSC method. Fig. 4 (b) is given in the worst cases,
where all of the rate-r nodes are treated as unstructured nodes
and the latency is only reduced by simplifying the decoding
of reliable nodes. Fig. 4 (b) indicates that the proposed HTHD
method achieves lower latency than the NEP-SSC decoder.

V. CONCLUSION

A HTHD decoder is proposed to reduce the decoding
latency of unstructured nodes, where the node reliability is
evaluated by the hypothesis testing. The reliable nodes are then
decoded by a novel hard decision method. Simulation verifies
that the HTHD significantly reduces the decoding latency.
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